Хлопок одной ладонью - Николай Кукушкин
Шрифт:
Интервал:
33. Engl, E. & Attwell, D. Non-signalling energy use in the brain. J Physiol 593, 3417–3429, doi:10.1113/jphysiol.2014.282517 (2015).
ГЛАВА 4. ЧЕГО НИ СДЕЛАЕШЬ РАДИ ЛЮБВИ
1. Dobzhansky, T., Spassky, B. & Tidwell, T. Genetics of natural populations. XXXII. Inbreeding and the mutational and balanced genetic loads in natural populations of Drosophila pseudoobscura. Genetics 48, 361 (1963).
2. Ralls, K., Ballou, J. D. & Templeton, A. Estimates of Lethal Equivalents and the Cost of Inbreeding in Mammals. Conservation Biology 2, 185–193 (1988).
3. Dobzhansky, T. Genetic Loads in Natural Populations. Science 126, 191–194 (1957).
4. Barrett, S. C. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522–524, doi:10.1038/352522a0 (1991).
5. Vesteg, M. & Krajčovič, J. On the Origin of Meiosis and Sex. Sull'Origine Della Meiosi e Della Sessualit. 100, 147–161 (2007).
6. Cavalier-Smith, T. Origins of the machinery of recombination and sex. Heredity (Edinb) 88, 125–141, doi:10.1038/sj.hdy.6800034 (2002).
7. Cleveland, L. R. The Origin and Evolution of Meiosis. Science 105, 287–289, doi:10.1126/science.105.2724.287 (1947).
8. Mable, B. K. & Otto, S. P. The evolution of life cycles with haploid and diploid phases. BioEssays 20, 453–462, doi:10.1002/(sici) 1521–1878 (199806) 20:63.0. Co;2-n (1998).
9. Bernstein, H., Byers, G. S. & Michod, R. E. Evolution of Sexual Reproduction: Importance of DNA Repair, Complementation, and Variation. The American Naturalist 117, 537–549, doi:10.1086/283734 (1981).
10. Wilkins, A. S. & Holliday, R. The evolution of meiosis from mitosis. Genetics 181, 3–12, doi:10.1534/genetics.108.099762 (2009).
11. Quinn, A. How is the gender of some reptiles determined by temperature?, (2007).
12. Gilbert, S. F. & Barresi, M. J. F. Developmental biology (2016).
13. Lehtonen, J., Kokko, H. & Parker, G. A. What do isogamous organisms teach us about sex and the two sexes? Philos Trans R Soc Lond B Biol Sci 371, doi:10.1098/rstb.2015.0532 (2016).
14. Hopkins, K. Eunuchs in Politics in the Later Roman Empire. Proceedings of the Cambridge Philological Society 9, 62–80, doi:10.1017/S1750270500001408 (1963).
15. Tougher, S. & Boustan, R. a. S. Eunuchs in antiquity and beyond (Classical Press of Wales and Duckworth; David Brown Book [distributor in USA], 2002).
16. Walter, H. E. Biology of the Vertebrates: A Comparative Study of Man and His Animal Allies (Macmillan, 1928).
17. De Felici, M. in Oogenesis (eds Giovanni Coticchio, David F. Albertini, & Lucia De Santis) 19–37 (Springer London, 2013).
18. Fabian, D. F., T. The Evolution of Aging. Nature Education Knowledge 3 (2011).
19. Kirkwood, T. B. Evolution of ageing. Nature 270, 301–304, doi:10.1038/270301a0 (1977).
Часть II. Откуда взялись мы
ГЛАВА 5. СЛОЖЕНИЕ ДВИЖЕНИЯ
1. Simpson, A. G. & Roger, A. J. The real 'kingdoms' of eukaryotes. Curr Biol 14, R693–696, doi:10.1016/j.cub.2004.08.038 (2004).
2. Keeling, P. J. et al. The tree of eukaryotes. Trends Ecol Evol 20, 670–676, doi:10.1016/j.tree.2005.09.005 (2005).
3. Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52, 399–451, doi:10.1111/j.1550–7408.2005.00053.x (2005).
4. Stiller, J. W. et al. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun 5, 5764, doi:10.1038/ncomms6764 (2014).
5. Bodyl, A., Mackiewicz, P. & Gagat, P. Organelle evolution: Paulinella breaks a paradigm. Curr Biol 22, R304–306, doi:10.1016/j.cub.2012.03.020 (2012).
6. Philippe, H. et al. Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19, 706–712, doi:10.1016/j.cub.2009.02.052 (2009).
7. Nielsen, C. Six major steps in animal evolution: are we derived sponge larvae? Evol Dev 10, 241–257, doi:10.1111/j.1525-142X.2008.00231.x (2008).
8. Cavalier-Smith, T. Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Philos Trans R Soc Lond B Biol Sci 372, doi:10.1098/rstb.2015.0476 (2017).
9. Fairclough, S. R., Dayel, M. J. & King, N. Multicellular development in a choanoflagellate. Curr Biol 20, R875–876, doi:10.1016/j.cub.2010.09.014 (2010).
10. Juliano, C. & Wessel, G. Developmental biology. Versatile germline genes. Science 329, 640–641, doi:10.1126/science.1194037 (2010).
11. Worheide, G. et al. Deep phylogeny and evolution of sponges (phylum Porifera). Adv Mar Biol 61, 1–78, doi:10.1016/B978-0-12-387787-1.00007–6 (2012).
12. Leininger, S. et al. Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans. Nat Commun 5, 3905, doi:10.1038/ncomms4905 (2014).
13. Ereskovsky, A. V. et al. The Homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology: model sponge Oscarella lobularis. Bioessays 31, 89–97, doi:10.1002/bies.080058 (2009).
14. Sharp, K. H., Eam, B., Faulkner, D. J. & Haygood, M. G. Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73, 622–629, doi:10.1128/AEM.01493–06 (2007).
15. Gilbert, S. F. & Barresi, M. J. F. Developmental biology (2016).
16. Collins, A. G. Phylogeny of Medusozoa and the evolution of cnidarian life cycles. Journal of Evolutionary Biology 15, 418–432, doi:10.1046/j.1420–9101.2002.00403.x (2002).
17. Telford, M. J., Budd, G. E. & Philippe, H. Phylogenomic Insights into Animal Evolution. Curr Biol 25, R876–887, doi:10.1016/j.cub.2015.07.060 (2015).
18. Finnerty, J. R. Cnidarians Reveal Intermediate Stages in the Evolution of Hox Clusters and Axial Complexity1. Integrative and Comparative Biology 41, 608–620, doi:10.1093/icb/41.3.608 (2015).
19. Adoutte, A. et al. The new animal phylogeny: reliability and implications. Proc Natl Acad Sci USA 97, 4453–4456, doi:10.1073/pnas.97.9.4453 (2000).
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!