📚 Hub Books: Онлайн-чтение книгДомашняяЛогика случая. О природе и происхождении биологической эволюции - Евгений Кунин

Логика случая. О природе и происхождении биологической эволюции - Евгений Кунин

Шрифт:

-
+

Интервал:

-
+
1 ... 106 107 108 109 110 111 112 113 114 ... 151
Перейти на страницу:

Это не все, что может нам дать сравнительный анализ: сравнение самих РНК также вскрывает важные явления и загадывает поразительные загадки. Так, анализ большой рибосомной субъединицы РНК 23S выявил иерархический сценарий последовательности дупликаций, способной привести от простой древней шпильки РНК к современной, сложной, универсально консервативной структуре рРНК (Bokov and Steinberg, 2009).

Консерватизм структуры определенных элементов последовательностей (таких как псевдоуридиновая петля) и даже сайтов модификации тРНК всех специфичностей (и, разумеется, всех видов) не оставляет сомнений в том, что все они эволюционировали от общего предка (Eigen et al., 1989). Отсюда, при сравнении современных последовательностей и структур, возникает второй парадокс эволюции трансляции. Если на некоторой стадии эволюции существовал единственный предок тРНК всех специфичностей, то как могла подобная трансляционная система действовать, точнее, как она могла обеспечивать специфичность кодирования аминокислотных последовательностей нуклеотидными? Если же на этом этапе трансляционной системы еще не существовало, то что привело к эволюции специфичной к аминокислотам тРНК?

Мы обратимся к этим и смежным вопросам ниже, но сначала следует хотя бы кратко рассмотреть центральное понятие в области исследования происхождения жизни: мир РНК.

Рибозимы и мир РНК

Центральная догма молекулярной биологии (Crick, 1970) постулирует, что информация передается от ДНК к белку посредством РНК (Фрэнсис Крик дополнил ее возможностью обратной передачи информации от РНК к ДНК после открытия обратной транскрипции):

ДНК↔РНК ⇒ белок

Очевидно, размышляя о происхождении первых живых форм, мы оказываемся перед вопросом типа «курица или яйцо»: что появилось первым — ДНК или белок? ген или его продукт? В такой постановке вопрос, естественно, неразрешим из-за парадокса Дарвина—Эйгена: чтобы реплицировать и транскрибировать ДНК, нужны функционально активные белки, но производство этих белков, в свою очередь, требует точной репликации, транскрипции и трансляции нуклеиновых кислот. Если строго следовать центральной догме, невозможно вообразить, каким мог быть начальный материал для цикла Дарвина—Эйгена. Даже вынесение ДНК из триады и постулат о том, что изначальный генетический материал состоял только из РНК (и сведение, таким образом, триады к диаде), хоть и является ценной идеей (см. следующую главу), но не помогает разрешить парадокс. Чтобы эволюция в сторону усложнения началась, система должна каким-то образом вступить в цикл Дарвина—Эйгена до того, как установится связь между РНК-матрицами (информационной частью системы) и белком (исполнительной частью).

Блестяще остроумное и, по-видимому, единственное решение было предложено независимо К. Вёзе, Ф. Криком и Л. Оргелом в 1967–1968 годах (Crick, 1968; Orgel, 1968; Woese, 1967): ни курица, ни яйцо, но то, что между ними, — одна РНК. Уникальным свойством РНК, делающим ее вероятным и, скорее всего, наилучшим кандидатом на главную роль в древнейшей репликационной системе, является ее способность сочетать в себе информационные и каталитические функции. Было очень заманчиво предположить, что первые репликаторные системы — первые формы жизни — состояли только из молекул РНК, действующих и как носители информации (геномы и гены), и как катализаторы различных реакций, включая в том числе синтез их самих и их предшественников. Это смелое предположение получило блестящее подтверждение с открытием и последующим изучением рибозимов (ферментов РНК): Томас Чек и коллеги в 1982 году открыли автокаталитическое расщепление интрона рРНК инфузории Tetrahymena, а в 1983 году Сидней Альтман и коллеги показали, что РНКаза P является рибозимом. Следом за этими эпохальными открытиями изучение рибозимов выросло в огромную самостоятельную и растущую область исследований (Cech, 2002; Doudna and Cech, 2002; Fedor and Williamson, 2005).

Открытие рибозимов сделало чрезвычайно привлекательной идею о том, что первые репликаторы целиком состояли из молекул РНК, катализировавших свою собственную репликацию. В 1986 году Уолтер Гилберт ввел термин «мир РНК» для обозначения этой гипотетической стадии эволюции жизни, и гипотеза мира РНК завоевала широкую популярность, став ведущей и самой популярной гипотезой о ранних стадиях эволюции. (Различные аспекты гипотезы мира РНК и подтверждающие ее данные основательно рассмотрены в одноименной книге, вышедшей в 2010 г. в 4-м издании: Atkins et al., 2010.)

Популярность гипотезы мира РНК еще более стимулировала исследования рибозимов, нацеленные на поиск разнообразных каталитических активностей РНК — в первую очередь, пожалуй, активности РНК-репликазы. Заслуживает внимания тот факт, что главным экспериментальным подходом к получению рибозимов с желаемой активностью является отбор in vitro, который, во всяком случае концептуально, воспроизводит дарвиновскую эволюцию, происходившую, как полагают, в первичном мире РНК (Ellington et al., 2009). Эксперименты по направленному отбору строятся таким образом, чтобы в случайной популяции последовательностей РНК амплифицировались только те из них, которые катализируют заданную реакцию. В многостадийных экспериментах по отбору были получены рибозимы, катализирующие весьма обширное разнообразие реакций.

В табл. 12-1 перечислены некоторые из наиболее биологически значимых реакций, катализируемых рибозимами. Примечательно, что все три элементарные реакции, необходимые для трансляции, — (1) активация аминокислот через образование аминоацил-АМФ, (2) аминоацилирование (т)РНК и (3) транспептидация (реакция пептидилтрансферазы) — успешно моделируются с помощью рибозимов. Реакция авто-аминоацилирования, принципиально важная для возникновения первичных РНК-адаптеров (аналог АРСазы в мире РНК), была отобрана in vitro с относительной легкостью. Поразительно, что лучшие из полученных рибозимов катализируют эту реакцию с большей скоростью и специфичностью, чем соответствующие АРСазы, и что были отобраны очень короткие олигонуклеотиды, обладающие этой активностью (Turk et al., 2010).

Таблица 12-1

Некоторые из функций рибозимов, потенциально важные для биологической эволюции

[Реакция] / Свойства рибозима

[Синтез аминоацил-аденилатов] Низкоэффективное образование лейцил- и фенилаланил-аденилатов наблюдалось со 114-нуклеотидным рибозимом.

[Авто-аминоацилирование] Авто-аминоацилирование 43-нуклеотидного рибозима фенилаланином с Фен-АТФ в качестве субстрата. 77-нуклеотидная РНК катализирует ту же реакцию с более высокими избирательностью и скоростью авто-аминоацилирования, чем Фен-РСаза.

[3’-аминоацилирование РНК in-trans] Минимальный рибозим, способный к не избирательному аминоацилированию тРНК, состоит из 29 нуклеотидов. Был получен 45-нуклеотидный рибозим с широким спектром действия на разнообразные тРНК и аминокислоты. Сообщается также о высокоизбирательном и эффективном аминоацилировании более длинных рибозимов.

[Рибозимы-пептидилтрансферазы, отобранные in vitro] Отобрано несколько рибозимов, образующих дипептиды из аминокислоты, связанной эфирной связью с АМФ, или олигонуклеотида и свободной аминокислоты. Обнаружено структурное сходство между рибозимами пептид илтрансферазы и соответствующим участком 23S рРНК. Описано образование Фен-Фен-тРНК 29-нуклеотидным аминоацилирующим рибозимом.

1 ... 106 107 108 109 110 111 112 113 114 ... 151
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?