📚 Hub Books: Онлайн-чтение книгДомашняяКосмический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд

Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд

Шрифт:

-
+

Интервал:

-
+
1 ... 108 109 110 111 112 113 114 115 116 117
Перейти на страницу:

Общим между двумя этими ситуациями – существованием жидкой воды и формированием галактик – является то, что одних только антропных (или ихтиотропных) соображений оказывается недостаточно для объяснения или предсказания всего на свете. Это неизбежно, если на Ландшафте оказывается более чем одна долина с пригодными для жизни условиями, а когда ландшафт состоит из 10500 долин, вероятность существования множества пригодных для жизни долин выглядит достаточно высокой. Назовём пригодный для существования жизни вакуум антропно приемлемым. Обычные физика и химия в антропно приемлемой долине могут быть очень похожи на наши. Там могут существовать электроны, ядра, планеты, звёзды, галактики и законы гравитации, почти такие же, как и в нашем мире. Различия могут обнаруживаться лишь в таких вещах, которые интересуют только физиков высоких энергий. Например, в природе существует множество частиц: t-кварк, тау-лептон и другие, – свойства которых вряд ли оказывают какое-то серьёзное влияние на обычный мир. Различия между такими мирами будет очень сложно обнаружить без помощи гигантских ускорителей заряженных частиц. Некоторые из этих вакуумов (включая наш собственный) могут содержать множество новых типов частиц, не оказывающих практически никакого влияния на обычную физику. Есть ли способ объяснить, почему мы живём в каком-то одном конкретном из этих антропно приемлемых вакуумов? Очевидно, что антропный принцип нам в этом не помощник, потому что все подобные вакуумы допускают существование жизни.

Этот вывод вызывает разочарование. Он оставляет теорию открытой для серьёзных обвинений в том, что она не обладает предсказательной силой, к которым учёные особенно чувствительны. Для решения этой проблемы многие космологи пытались дополнить антропный принцип дополнительными вероятностными предположениями. Например, вместо того чтобы спрашивать, почему масса t-кварка имеет конкретное значение, можно попытаться спросить, какова вероятность того, что масса t-кварка находится в определённом диапазоне.

Вот одно из таких предположений. В конце концов мы достаточно хорошо изучим Ландшафт, чтобы вычислить, какое количество долин будут содержать t-кварки с массами в том или ином диапазоне. На некоторые диапазоны масс придётся много долин, на некоторые – мало. Дальше очевидно: значение массы t-кварка, на которое приходится большее количество долин, более вероятно. Но для реализации такой программы исследований нам необходимо знать о Ландшафте гораздо больше, чем мы знаем сегодня. Но давайте поставим себя на место будущих исследователей, имеющих подробную карту Ландшафта, на которую нанесены все возможные вакуумы с любым мыслимым набором свойств. Самым естественным предположением будет, что относительная вероятность двух выбранных значений какой-либо константы будет соответствовать отношению количества вакуумов, в которых константа имеет выбранные значения. Например, если количество вакуумов, в которых масса какой-то частицы имеет значение M1, вдвое больше количества вакуумов, в которых масса этой частицы имеет значение M2, то из этого следует, что вероятность того, что частица имеет массу M1, вдвое выше вероятности, что частица имеет массу M2. Если бы нам повезло, то мы могли бы обнаружить, что определённое значение массы t-кварка соответствует самому большому числу долин. Рассуждая в этом ключе, мы могли бы предположить, что именно такое значение массы и должно быть у t-кварка в нашем мире.

Ни одно единичное предсказание такого рода, основанное на вероятности, не может подтвердить или опровергнуть теорию, но множество успешных статистических прогнозов способно придать нашей уверенности больший вес.

Идея заманчива, но есть серьёзные основания подвергнуть такую логику сомнению. Не забывайте, что Ландшафт – это всего лишь пространство возможностей. Если бы мы были фишиками, то могли бы аналогичным образом размышлять о ландшафте всевозможных планет, рассчитывая найти среди них любые варианты, допускаемые Законами Физики, например планеты, ядро которых состоит из чистого золота. Уравнения физики допускают существование как золотых, так и железных шаров.[110] Следуя такой логике, фишики могли бы прийти к выводу, что вероятность, что их планета имеет железное ядро,[111] точно такая же, как вероятность, что она имеет золотое ядро, но это очевидная ошибка.

В действительно мы хотим знать не количество возможных видов планет, а количество реально существующих планет каждого вида. Для этого нам нужны нечто большее, чем абстрактный подсчёт возможностей. Мы должны знать, как и в каких пропорциях синтезируются железо и золото в термоядерных процессах, происходящих в недрах звёзд.

Железо является наиболее стабильным из всех химических элементов. Среди всех атомных ядер труднее всего выбить протон или нейтрон из ядра железа. Следовательно, процессы термоядерного синтеза, идущие в недрах звёзд, будут приводить к синтезу гелия из водорода, затем лития, бериллия, бора, углерода и более тяжёлых элементов, вплоть до железа. В результате железо окажется наиболее распространённым во Вселенной химическим элементом по отношению к более тяжёлым, к которым относится и золото. Именно поэтому железо относительно дёшево, а золото стоит более тысячи долларов за унцию. Золото значительно более редкий элемент, чем железо. Почти все планеты земной группы должны иметь железное ядро, а не золотое. По сравнению с вероятностью обнаружить планету с железным ядром вероятность обнаружить планету с золотым ядром стремится к нулю. Поэтому нам нужно научиться считать актуальности, а не возможности.

При подсчёте карманных вселенных мы должны руководствоваться той же логикой, которую использовали при подсчёте планет. И тут мы встречаемся с ужасной проблемой вечной инфляции. Из-за своей вечности вечная инфляция, по крайней мере, как мы её понимаем, производит бесконечное количество карманов и, соответственно, бесконечное разнообразие карманных вселенных. Это приводит нас к старой математической проблеме: как сравнить две бесконечности.

Какая из бесконечностей больше и насколько?

Проблема сравнения бесконечных чисел восходит к работам Георга Кантора, который в конце XIX века задался вопросом: как сравнить два множества, каждое из которых содержит бесконечное количество элементов? Для начала разберёмся, как мы сравниваем обычные числа. Представим, что у нас есть куча яблок и куча апельсинов. Очевидный ответ состоит в том, что нужно просто взять и пересчитать количество фруктов в каждой куче, но поскольку мы хотим знать всего лишь, какая куча больше, мы можем воспользоваться более простым способом, который даже не требует от нас умения считать. Выложим яблоки в одну линию, затем выложим рядом с ними апельсины так, чтобы рядом с каждым яблоком лежал апельсин. Если какие-то яблоки остались лишними, значит, яблок больше, чем апельсинов. Если остались лишние апельсины, значит, апельсинов больше, чем яблок. Если каждому яблоку соответствует ровно один апельсин, значит, количества яблок и апельсинов одинаковы.

1 ... 108 109 110 111 112 113 114 115 116 117
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?