📚 Hub Books: Онлайн-чтение книгДомашняяПопулярная физика. От архимедова рычага до квантовой теории - Айзек Азимов

Популярная физика. От архимедова рычага до квантовой теории - Айзек Азимов

Шрифт:

-
+

Интервал:

-
+
1 ... 120 121 122 123 124 125 126 127 128 ... 237
Перейти на страницу:

В 1895 году Вьен произвел такое исследование и обнаружил, что при заданной температуре энергия излучалась на определенных частотах, увеличиваясь с возрастанием частоты и достигая максимума, а затем начинала уменьшаться, по мере того как частота поднималась еще выше.

Повышая температуру, Вьен обнаруживал, что на каждой частоте излучается больше энергии и что снова достигается максимум. Однако новый максимум был на большей частоте, чем предыдущий. Фактически, по мере того как он продолжал поднимать температуру, максимум частоты излучения продолжал двигаться в направлении все более и более высоких частот. Значение максимума частоты изменялось напрямую вместе с абсолютной температурой (T), так что закон Вьена можно выразить следующим образом:

Vmax = kT. (Уравнение 8.1)

где k — это константа отношения.

И закон Стефана, и закон Вьена очень важны для астрономии. Из природы спектра звезды можно узнать величину температуры ее поверхности. А из него можно получить представление о степени, в которой она излучает энергию, и, следовательно, о времени ее жизни. Чем горячее звезда, тем более короткой будет ее жизнь.

Из закона Вьена следует, что цвет звезд определяется их температурой (а не приближением или удалением их от нас, как предполагал Допплер, — см. гл. 5). Красноватые звезды сравнительно холодные, температура их поверхности 2000–3000 °К. Оранжевые звезды имеют температуру поверхности 3000–5000 °К, а желтые (такие, как наше Солнце) — 5000–8000 °К. Есть еще белые звезды, температура поверхности которых 8000–12 000 °К, а голубоватые звезды еще горячее.

Постоянная Планка

Тут возникает парадокс, поскольку остается загадкой, почему излучение черного тела должно распространяться именно так, как наблюдал Вьен. В 90-х годах XIX века физики считали, что излучающее тело случайным образом выбирает частоту, на которой излучает. Высокочастотное излучение предоставляет гораздо больший выбор, чем низкочастотное (так же как гораздо больше больших целых положительных чисел, чем малых), и, если бы излучение выбиралось случайным образом, гораздо чаще выбирались бы высокие частоты, чем низкие.

Лорд Рейлиф разработал уравнение, основанное на допущении, что все частоты могут быть излучаемыми с равной вероятностью. Он обнаружил, что количество энергии, излучаемой на определенном спектре частот, изменяется пропорционально четвертой степени частоты. Свет фиолетовой волны должен излучать в 16 раз больше энергии, чем свет красной волны, а в ультрафиолете должно излучаться еще больше. Фактически, по формуле Рейлифа, почти вся энергия излучающего тела будет излучаться очень быстро в глубоком ультрафиолете. Некоторые называли это «фиолетовой катастрофой».

Однако самым интересным касательно фиолетовой катастрофы стало то, что ее так и не произошло. Если быть точным, на самых низких частотах уравнение Рейлифа соответствовало истине и количество излучения быстро возрастало. Но вскоре количество излучения начало быстро падать по отношению к ожидаемому. Оно достигло максимума на некоей средней частоте, хотя этот максимум и был гораздо ниже ожидаемого по уравнению Рейлифа, а затем на еще более высоких частотах количество излучения начало быстро уменьшаться, в то время как формула Рейлифа прогнозировала постоянное увеличение.

С другой стороны, Вьен разработал уравнение, которое должно было отражать то, что действительно наблюдалось на высоких частотах. К сожалению, оно не совпадало с реальностью на низких частотах.

В 1899 году немецкий физик Макс Карл Эрнст Людвиг Планк (1858–1947) взялся за решение этой проблемы. Анализ Рейлифа, как показалось Планку, был математически и логически верен при условии принятия его аксиом, а поскольку уравнение Рейлифа не соответствовало фактам, необходимо было проверить аксиомы. Что, если не все частоты излучаемы с одинаковой вероятностью? Поскольку аксиома об одинаковой вероятности требовала, чтобы излучалось все больше и больше света на все более и более высоких частотах, в то время как наблюдения показывали обратное, Планк предположил, что вероятность излучения уменьшалась с увеличением частоты.

Так, на распространение излучения черного тела будут влиять два фактора. Во-первых, непреложный факт того, что высоких частот больше, чем низких, следовательно, должна иметь место тенденция излучать больше высокочастотного, чем низкочастотного света. Во-вторых, поскольку вероятность излучения уменьшается по мере повышения частоты, должна иметься тенденция излучать меньше в высокочастотной части спектра.

На самых низких частотах, где вероятность излучения довольно высока, первый фактор доминирует и излучение увеличивается с повышением частоты, в соответствии с формулой Рейлифа. Однако по мере дальнейшего возрастания частоты большее значение приобретает второй эффект. Все большее число высоких частот более чем уравновешивается все меньшей вероятностью излучения на столь высоких частотах. Количество излучения начинает прибавляться все медленнее по мере продолжения увеличения частоты, достигает максимума, а затем начинает уменьшаться.

Предположим, что температура повышается. Это не отменит первого фактора, поскольку тот факт, что высоких частот больше, чем низких, оспариванию не подлежит. Однако что, если подъем температуры увеличивает вероятность излучения на более высоких частотах? Тогда второй фактор может быть ослабленным. В этом случае излучение (при более высоких температурах) будет продолжать увеличиваться на более высоких частотах еще долгое время до того, как этот фактор будет преодолен и подавлен ослабленным вторым фактором. Максимум излучения, следовательно, сдвинется в более и более высокие частоты по мере повышения температуры. Именно это и наблюдал Вьен.

Но как рассчитать закономерность, по которой вероятность излучения понижается по мере повышения частоты? Планк предположил, что энергия не течет непрерывно (что физики считали само собой разумеющимся), а состоит из отдельных частиц. Другими словами, Планк представил, что существуют «атомы энергии» и что излучающее тело может отдать один атом энергии или два атома энергии, но никогда не пол-атома энергии, и в любом случае излучаться должно целое число таких атомов. Более того, Планк пришел к предположению, что содержание энергии в таком атоме энергии должно зависеть напрямую от частоты света, на которой он излучается.

Планк назвал эти атомы энергии квантами (от латинского «сколько?»), поскольку под критическим вопросом оставался размер кванта.

Представим себе выводы из этой квантовой теории. Фиолетовый свет, частота которого в два раза больше частоты красного, должен будет излучать кванты в два раза большие, чем красный. Ни один квант фиолетового цвета не может быть излучен, пока не наберется достаточно энергии до полного кванта, поскольку меньше энергии, чем квант, по утверждениям Планка, излучать нельзя. Однако оставалась вероятность, что до того, как наполнить квант фиолетового света, набиралось достаточно энергии, часть ее могла оторваться, чтобы сформировать квант красного света, в два раза меньшего размера.

Чем выше частота света, тем меньше вероятность того, что успеет собраться достаточно энергии, чтобы сформировать полный квант до того, как он оторвется для формирования требующего меньше энергии кванта меньшей частоты. Это объясняет, почему «фиолетовой катастрофы» не случилось и почему свет излучается по большей части на низких частотах и медленнее, чем можно было бы ожидать.

1 ... 120 121 122 123 124 125 126 127 128 ... 237
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?