📚 Hub Books: Онлайн-чтение книгДомашняяЗакрученные пассажи. Проникая в тайны скрытых размерностей пространства - Лиза Рэндалл

Закрученные пассажи. Проникая в тайны скрытых размерностей пространства - Лиза Рэндалл

Шрифт:

-
+

Интервал:

-
+
1 ... 9 10 11 12 13 14 15 16 17 ... 146
Перейти на страницу:

Последние три вопроса являются центральными для этой книги. Однако прежде всего следует определить, существует ли какой-то способ скрыть свидетельства существования дополнительных измерений, так чтобы двумерный мир Афины казался одномерным, а вселенная с дополнительными измерениями казалась бы трехмерной пространственной структурой, которую мы и наблюдаем. Если мы примем идею мира с дополнительными измерениями, из какой бы теории они ни возникали, должно существовать хорошее объяснение того, почему мы до сих пор не зафиксировали ни малейших следов их существования.

Эта глава посвящена чрезвычайно малым, так называемым компактифицированным, или свернутым, измерениям. Они не простираются до бесконечности, как три привычные нам измерения, напротив, они быстро сворачиваются в петли, как туго намотанная катушка ниток. Никакие два тела не могут быть удалены друг от друга на большое расстояние вдоль компактифицированного измерения; всякая попытка совершить экскурсию на большое расстояние обернется вместо этого путешествием по кольцу, вроде беготни Додо. Подобные компактифицированные измерения могут быть такими маленькими, что мы никогда не заметим их существования. Как мы поймем в дальнейшем, если крохотные свернутые измерения существуют, то их обнаружение является непростой задачей.

Свернутые измерения в физике

Теория струн — наиболее многообещающий кандидат на теорию, объединяющую квантовую механику и тяготение, — дает конкретный повод для размышлений о дополнительных измерениях. Действительно, единственные известные нам согласованные версии теории струн обременены этими удивительными придатками. Однако, хотя появление теории струн в мире физики укрепило респектабельность дополнительных измерений, сама идея этих измерений возникла значительно раньше.

В начале двадцатого века теория относительности Эйнштейна распахнула двери для идеи о возможном существовании дополнительных измерений пространства. Теория относительности описывает тяготение, но эта теория не говорит нам, почему мы ощущаем то конкретное тяготение, которое мы знаем. Теория Эйнштейна не отдает предпочтения никакому конкретному числу пространственных измерений. Она одинаково хорошо работает в случае трех, четырех или десяти измерений. Почему же тогда кажется, что их только три?

В 1919 году, следуя по пятам за эйнштейновской общей теорией относительности (завершенной в 1915 году), польский математик Теодор Калуца заметил эту черту теории Эйнштейна и смело предположил существование четвертого пространственного измерения, нового невидимого измерения у пространства[18]. Он полагал, что дополнительное измерение должно как-то отличаться от трех знакомых бесконечных измерений, хотя не уточнил как. Целью Калуцы при введении лишнего измерения было объединение сил тяготения и электромагнетизма. Хотя детали этой неудавшейся попытки объединения сейчас несущественны, дополнительное измерение, которое он столь дерзко ввел, оказалось очень к месту.

Калуца написал свою статью в 1919 году. Эйнштейн, который был рецензентом журнала и оценивал возможность публикации статей в научном журнале, колебался в отношении достоинств этой идеи. Он задержал публикацию статьи Калуцы на два года, но в конце концов признал ее оригинальность. Но Эйнштейн все же хотел знать, чем было это измерение. Где оно было и чем отличалось от других? Насколько далеко оно простиралось?

Эти вопросы были очевидными. Те же самые вопросы могут тревожить и вас. На вопросы Эйнштейна не было никакого отклика вплоть до 1926 года, когда шведский математик Оскар Клейн задумался над ними. Клейн предположил, что дополнительное измерение может быть свернуто в форме окружности и быть чрезвычайно малым, равным 10-33 см[19], т. е. одной миллиардной от триллион триллионной доли сантиметра. Такое крохотное свернутое измерение должно существовать везде, иначе говоря, в каждой точке пространства должна существовать своя крохотная окружность размером 10-33 см.

Эта маленькая величина представляет собой планковскую длину, величину, которая будет для нас существенной позднее, когда мы детальнее обсудим гравитацию. Клейн выбрал планковскую длину потому, что это единственная длина, которая может естественно возникнуть в квантовой теории гравитации, а гравитация связана с формой пространства. Пока что все, что нам нужно знать о планковской длине, — это то, что она чрезвычайно, невообразимо мала, много меньше, чем все, что мы когда-либо будем иметь шанс измерить. Она на двадцать четыре порядка величины[20] меньше размера атома и на девятнадцать порядков величины меньше протона. Нетрудно проглядеть что-то столь же маленькое, как это.

В повседневной жизни есть много примеров вещей, протяженность которых в одном из трех обычных измерений слишком мала, чтобы быть замеченной. Картина на стене или бельевая веревка с большого расстояния кажутся протяженными не в трех, а в меньшем числе измерений. Мы не видим толщину слоев краски или толщину веревки. Для обычного наблюдателя картина выглядит так, как будто у нее только два измерения, а веревка для белья кажется имеющей только одно, даже если мы знаем, что на самом деле эти вещи имеют три измерения. Единственный способ разглядеть трехмерную структуру таких вещей — посмотреть на них поближе или с достаточно хорошим разрешением. Если мы протянем шланг через футбольное поле и посмотрим на него с вертолета, как показано на рис. 15, шланг будет казаться одномерным. Но с близкого расстояния вы можете различить два измерения поверхности шланга и трехмерный объем, который эта поверхность ограничивает.

Закрученные пассажи. Проникая в тайны скрытых размерностей пространства

Однако для Клейна неразличимо мала была не толщина какой-то вещи, а малым было само измерение. Так что же означают слова, что измерение мало? Как будет выглядеть вселенная со свернутым измерением с точки зрения того, кто живет в ней? Опять же ответ на этот вопрос зависит полностью от размера свернутого измерения. Рассмотрим пример, показывающий, как будет выглядеть мир для разумных существ, которые слишком малы или, наоборот, слишком велики по сравнению с размером свернутого дополнительного измерения. Поскольку нарисовать четыре или больше измерений невозможно, то на первом рисунке я представлю вселенную с малым компактифицированным измерением, имеющую только два измерения, причем одно из них туго скручено до очень малого размера (рис. 16).

1 ... 9 10 11 12 13 14 15 16 17 ... 146
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?