Антихрупкость. Как извлечь выгоду из хаоса - Нассим Николас Талеб
Шрифт:
Интервал:
Основное уравнение. Хрупкость – это частичный философский камень в промежутке до K, отсюда неучтенная хрупкость ωB оценивается путем сравнения двух интегралов, взятых в промежутке до K, чтобы выявить эффект левого хвоста:
Эту формулу можно приблизительно оценить, используя интерполяцию, взятую между двумя значениями α, которые отделены от среднего значения средним отклонением α, то есть Δα. В результате получим оценку:
Антихрупкость ωC есть интеграл, посчитанный на промежутке K до бесконечности. Мы можем изучить ωB путем точечных оценок для X ≤ K.
откуда:
что приводит нас к эвристическому правилу распознания хрупкости (Taleb, Canetti, et al., 2012). В частности, если ώB (X) не меняет знак для X ≤ K, то ωB (K) будет иметь тот же знак. Распознать хрупкость можно по поведению в хвостах, для чего следует проверить функцию ώB (X) для любого X.
Таблица 12
Заблуждения, связанные с портфелем ценных бумаг. Среди тех, кто верит Марковицу, распространено одно заблуждение: теория портфеля побуждает диверсифицировать вложения, следовательно, она лучше, чем ничего. Неправда, придурки от финансов: она побуждает оптимизировать, то есть вкладывать в ценные бумаги больше денег, чем следует. Эта теория не побуждает рисковать меньше за счет диверсификации, она заставляет открывать больше позиций только потому, что у них есть компенсирующие статистические свойства, а значит, порождает риск ошибки модели – и очень большой риск недооценки хвостовых событий. Что понять, как это происходит, представьте себе двух инвесторов, выбирающих три объекта для размещения средств: наличные деньги, ценные бумаги А и ценные бумаги В. Инвестор, не знающий статистических свойств А и В и понимающий, что он их не знает, разместит часть средств, которую не хочет терять, в наличности, а остальное в А и В – в зависимости от эвристики, которую он привык применять. Инвестор, полагающий, что он знает статистические свойства А и В, то есть параметры σA, σB, ρA, B, вложит в ценные бумаги ωA и ωB так, чтобы суммарный риск был на желаемом уровне (ожидаемую отдачу мы в расчет не берем). Чем более занижена в его восприятии корреляция ρA, B, тем худшему риску ошибки модели он подвержен. Полагая, что корреляция ρA, B равна 0, инвестор вложит в ценные бумаги на треть больше средств, чем следует, если брать в расчет маловероятные события. Если же бедный инвестор питает иллюзию, что корреляция равна –1, он максимально инвестирует в A и B. И если он вдобавок использует леверидж, его ждет та же печальная судьба, что постигла фонд Long-Term Capital Management, одураченный как раз параметрами. (В реальности, в отличие от статей об экономике, ситуация обычно меняется; ради Баала, она меняется!) Мы можем повторить то же рассуждение для каждого параметра σ и посмотреть, как заниженная оценка этой σ ведет к избыточному размещению средств.
Работая трейдером, я заметил – и эта идея меня не отпускала, – что значения корреляций на разных временных промежутках никогда не совпадают. Нестабильные – это для них слишком мягкое слово: 0,8 в течение одного долгосрочного периода превращается в —0,2 в течение другого долгосрочного периода. Лохотрон чистой воды. Когда рынок напряжен, корреляции меняются еще быстрее – без какой-либо очевидной регулярности, несмотря на все попытки смоделировать «кризисные корреляции». Taleb (1997) изучает эффект стохастических корреляций: чувствовать себя в безопасности может лишь тот, кто играет на понижение при корреляции 1 и покупает при —1 – что вполне соответствует эвристическому правилу 1/n.
Критерий Келли против Марковица. Чтобы применить оптимизацию а-ля Марковиц во всей ее полноте, необходимо знать полное совместное распределение вероятностей всех активов до конца времен – плюс точную функцию полезности для благосостояния до конца времен. И без погрешностей! (Мы видели, что погрешность оценки взрывает систему.) Метод Келли, разработанный почти одновременно с теорией Марковица, не требует ни совместного распределения, ни функции полезности. На практике инвестору нужно знать соотношение ожидаемой прибыли к отдаче в худшем случае – динамически скорректированное, чтобы избежать катастрофы. В случае с трансформациями штанги худшая отдача гарантирована. И ошибка модели для критерия Келли куда меньше. См. Thorp (1971, 1998), Haigh (2000).
Замечательный Аарон Браун считает, что экономисты отвергли идеи Келли – невзирая на их практическую привлекательность, – из-за любви к общим теориям ценообразования.
Ограниченный метод проб и ошибок совместим с критерием Келли, когда инвестор имеет представление о потенциальной отдаче. Даже если нельзя сказать, какой будет отдача, в случае, если потери ограничены, результат будет неуязвим, так что этот метод должен превзойти теорию хрупкодела Марковица.
Корпоративные финансы. Если коротко, корпоративные финансы обычно прогнозируются точечно, а не дистрибутивно. Если мы введем, скажем, в модель оценки Гордона неустойчивый прогноз денежных потоков, заменив заданный – и известный – рост (и другие параметры) постоянно скачущими переменными (особенно при распределениях с жирными хвостами), предполагаемая стоимость компаний, которые считаются дорогими или растут быстро, но зарабатывают мало, может значительно повыситься. Рынок оценивает их именно так эвристически, без какой-либо явной причины.
Заключение и вывод. Истеблишмент экономической науки так и не понял, что если у нас имеется работающая модель (а это крайне великодушное предположение), но мы не уверены в ее параметрах, это неизбежно приведет к увеличению хрупкости в условиях выпуклости и нелинейности.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!