📚 Hub Books: Онлайн-чтение книгСказкиТеория относительности и сверхсветовая скорость - Владимир Иванович Моренко

Теория относительности и сверхсветовая скорость - Владимир Иванович Моренко

Шрифт:

-
+

Интервал:

-
+
1 ... 10 11 12 13 14 15 16 17 18 ... 20
Перейти на страницу:
и должны использоваться определения кинетической энергии тела в трехмерном пространстве и импульса тела в четырехмерном пространстве, полученные при использовании представления о функции Лагранжа для указанных видов пространства. Но в любом случае ни в одной из указанных областей, включая и квантовую механику, не может существовать ограничение скорости материальных объектов скоростью света.

В соответствии с изложенным, утверждение о том, что любая физическая теория и любые физические явления и процессы должны соответствовать принципу классической лоренц-ковариантности, является необоснованным и противоречащим реальным опытным данным. В то же время постулаты специальной теории относительности и вывод о замедлении времени процессов на движущемся объекте, точнее зависимости частоты излучения движущегося источника с точки зрения стороннего неподвижного наблюдателя, нет особой необходимости пересматривать. Но эти постулаты и выводы требуют только изменения математического аппарата специальной теории относительности, хотя она и основана на предположении о возможности не мысленного, а вполне реального существования «пустого» пространства и инерциальных систем координат. Само же существование сверхсветовой скорости для материальных объектов не является недопустимым с точки зрения теории, базирующейся на уточненном математическом аппарате.

Общая теория относительности определяет особую форму законов механики не только при условии конечности скорости света, но и при условии влияния на поведение и характеристики тел гравитационного взаимодействия. Для этого вводится понятие об искривленности пространства, причем сами законы механики описываются с привлечением постулатов специальной теории относительности.

В настоящее время наиболее признанным определением сущности искривленного пространства является выражение инвариантного времени собственного в виде:

Но если внимательно рассмотреть данное уравнение инвариантного интервала, можно найти два способа его объяснения – математический и физический. Первый основан на принципе искривления пространства и геометрических методах решения физических задач и полностью реализован в аппарате общей теории относительности и полевых теориях. А вот второй способ (физический), основанный на возможности изменения скорости света в присутствии гравитационных масс, по непонятным причинам полностью исключен из рассмотрения. Однако, именно второй способ имеет четкое физическое обоснование, поскольку в оптике широко известно явление преломления света, вызванное уменьшением скорости распространения электромагнитных волн в физической среде. А присутствие в выражении интервала масштабного фактора a2(t) может трактоваться и как реальное искривление пространства (вакуума) гравитационным полем, и как наличие у вакуума показателя преломления, величина которого в присутствии гравитационных масс отлична от величины этого параметра при отсутствии указанных масс. В принципе, в обоих случаях речь идет об одном и том же: «искривлении» пути движения фотона в пространстве. Но если в первом случае предполагается существование мировых (геодезических) линий в искривленном пространстве, то во втором случае предполагается наличие у вакуума свойств оптической среды.

Для того, чтобы сделать правильный выбор, какая из трактовок является удовлетворительной, необходимо разобраться, что является причиной искривления траектории движения фотона в пространстве – реальное физическое явление или результат математического описания взаимодействия электромагнитного излучения с вакуумом, как средой, находящейся под действием гравитационного поля.

Для этого необходимо, прежде всего, понять, о каком именно пространстве идет речь – о математическом (мысленная сущность), или о физическом (реальная сущность) гравитационном поле. То, что в уравнении поля Эйнштейна объединены физические и геометрические величины, еще не свидетельствует о физической природе искривления пространства, так как физические члены этого уравнения относятся не к собственно пространству, а к включенным в него источникам гравитационного поля. И корректным, с позиции сохранения непрерывности системы координат, на которой базируется формулировка геометрических членов уравнения поля (континуальности пространства), является условие отсутствия размеров у источников поля. Отметим, что данное условие является обязательным для любого физического поля при его математическом описании известными на настоящий момент методами геометрического построения координатного пространства.

Если же источник поля имеет размеры, то начало связанной с ним системы координат оказывается внутри отличной от собственно поля физической сущности, то есть иного пространства. В этом случае возникает проблема исключения из рассмотрения внутреннего пространства при сохранении свойства непрерывности при отображении внешнего пространства на все пространство. В общей теории относительности данная проблема проявляется при возникновении в решениях уравнения поля параметра

, указывающего на существование некоторого размера (радиуса), внутри которого уравнения общей теории относительности вряд ли возможно применить. То есть сама же теория содержит внутреннее противоречие с принятыми при ее создании аксиомами о непрерывности геометрического пространства. И для того, чтобы хоть как-то обеспечить соответствие математической модели гравитационного поля физической реальности при сохранении свойства непрерывности пространства, в общей теории относительности введено представление о его «искривлении» гравитацией как способ отображения плоского пространства с «дырками» на непрерывную континуальную сущность. В этом случае искривленное пространство представляет собой некую адекватную реальности математическую модель гравитационного поля, но не физический вакуум. Таким образом, эффект искривления пространства возникает на этапе его математического определения, и, в принципе, этот эффект не предопределен физическими обоснованиями, так как является следствием принятых аксиом, а не свойств реальной физической сущности. Именно это обстоятельство подтверждается экспериментальными данными, свидетельствующими о том, что пространство в его видимой части является плоским [2].

Весьма показательна в этом смысле аналогия с наблюдателем, находящимся в свободно падающем лифте, иллюстрирующая принцип эквивалентности, являющийся одним из базовых для общей теории относительности. Считается, что наблюдатель в падающем лифте не может экспериментально обнаружить, падает ли его лифт, или находится в состоянии покоя. В соответствии с предложенной аналогией, мы имеем дело с двумя замкнутыми системами, ограниченными непрозрачными стенками. Первой является инерциальная (лабораторная) система координат, а второй – свободно падающая система. При этом свободно падающая система находится под воздействием гравитационного поля, но его влияние на внутреннюю неподвижную относительно лифта систему отсутствует, и наблюдатель в ней находится в невесомости. Считается, что в данной ситуации принцип эквивалентности свободно падающей в гравитационном поле системы координат и лабораторной системы координат, не подверженной действию гравитационного поля, может быть справедлив, если мы принимаем во внимание только точки бесконечно малой окрестности начал координат (для самих начал координат обеих систем указанный принцип безоговорочно справедлив). Однако, в указанных окрестностях мы имеем дело с искажениями, вносимыми в координатную сетку свободно падающей системы гравитационным полем, являющимся центральным. Кроме того, из-за эффекта геодезической девиации «две свободно падающие рядом частицы будут находиться в относительном движении, обнаруживающем наличие гравитационного поля с точки зрения наблюдателя, падающего вместе с ними» (с.166 [5]). И, следовательно, каждому положению в пространстве относительно центра гравитационного поля и каждому моменту времени будут соответствовать свои собственные условия эквивалентности свободно падающей и инерциальной систем координат. Поэтому вряд ли можно признать безупречными определения метрического тензора и аффинной связности, а также

1 ... 10 11 12 13 14 15 16 17 18 ... 20
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?