📚 Hub Books: Онлайн-чтение книгДомашняяЯ - суперорганизм! Человек и его микробиом - Джон Терни

Я - суперорганизм! Человек и его микробиом - Джон Терни

Шрифт:

-
+

Интервал:

-
+
1 ... 10 11 12 13 14 15 16 17 18 ... 81
Перейти на страницу:

Как пишет в связи с этим журнал Nature, такая подверженность риску загрязнения «лишь усиливает озабоченность научного сообщества тем, что технология секвенирования развивается столь быстро, что в некоторых случаях она даже обгоняет возможности ученых пользоваться ею»[26]. Однако хотя получаемые данные всегда несколько расплывчаты и неопределенны, 16S-анализ всё же сообщает нам об образце «диких» (не выращенных в культуре) бактерий то, что прежде не удавалось узнать из исследования мешанины всевозможных ДНК. И хотя этот метод используется сейчас весьма широко, он – лишь первый уровень анализа. Чтобы получить более ясную картину того, что содержится в образце, не ограничиваясь грубой оценкой структуры микробной популяции, следует глубже проникнуть в ДНК.

Теперь возможно и это. В таких случаях опять же исследуются фрагменты ДНК, выделенные из «цельного» (неразделенного) образца. При таком подходе систему настраивают на секвенирование всех кусочков ДНК, какие только удастся найти. Изначально это секвенирование (так называемый «метод дробовика») применялось к отдельному виду: ученые пытались собрать воедино геномную последовательность из всех попадающихся фрагментов (какие-то повторялись, какие-то встречались лишь один раз).

Теперь же технологии настолько развиты, что мы можем позволить себе грубый силовой подход. Неважно, сколько видов в нашем образце. Просто расщепите ДНК, секвенируйте все фрагменты и посмотрите, какой смысл можно выявить в получившейся гигантской библиотеке всевозможных перепутанных последовательностей.

Всем этим как раз и занимается метагеномика. Она дает информацию обо всем генетическом составе сообщества организмов, даже если вы не знаете, какие организмы в него входят. Опять-таки пределы точности такого анализа часто определяются тем, насколько биологи, химики и компьютерщики, работая вместе, способны отделить сигнал от шума. По сути они разбираются с тысячами пазлов, которые сваливают в одну коробку и затем хорошенько встряхивают, причем никто толком не знает, на что похожи исходные картинки.

Впрочем, метагеномика предоставляет весьма перспективный метод работы с образцами, которые раньше считались бесполезными для анализа. Чем больше полных геномных последовательностей будет расшифровано и внесено в непрерывно растущие базы данных, тем эффективнее будет этот метод. Если тот или иной микробиом кажется нам заслуживающим внимания, теперь мы можем узнать, что в нем содержится, во всех подробностях. Хватило бы бюджета!

От наблюдений к экспериментам

Далее наступает этап, который технология облегчает мало. Нам предстоит выяснить, что все это значит. Вероятно, тут уместна аналогия с переходом от естественной истории к более глубокому научному пониманию того, что же мы так долго описывали и классифицировали. Здесь требуется объединить теорию с новыми экспериментами, иначе метагеномика рискует подпасть под шуточное определение Сиднея Бреннера, одного из отцов-основателей современной молекулярной генетики, и стать «биологией с непонятными данными на входе, высокими расходами и нулевым выходом».

Как же избежать столь безрадостного итога? Биологией можно заниматься самыми разными способами, но в данном случае разумно выделить три главных подхода. Один из них сводится к тому, чтобы выяснить, как проводить контролируемые эксперименты над микробиомом. Понятно, что опыты на людях ставить непросто, даже если эти опыты вполне отвечают этическим требованиям[27]. Значит, следует обратиться к микробиомам других видов. Микробиомы есть у всех, так что для сравнения можно использовать самые разные существа. Список соответствующих микробиомов, которые уже проанализированы, неуклонно растет.

Более четкое сравнение можно провести, используя подопытных животных, которые начинают свою жизнь без всякого микробиома, – снабдить их микробиомом, специально сконструированным для того, чтобы получить ответ на конкретный вопрос, интересующий экспериментатора. Основная модельная система здесь – безмикробные мыши. Впервые их вырастили в лаборатории еще полвека назад[28]. С помощью кесарева сечения им помогают появиться на свет, а затем растят в стерильных условиях. Всю работу исследователи должны выполнять при помощи герметических рукавов с перчатками на концах. Это занятие, дорогостоящее и трудоемкое, почти вышло из употребления с зарождением новой волны микробиомных исследований. Саркис Мазманян из Калифорнийского технологического института, лауреат премии «Гений» фонда Мак-Артура (с этим гением мы еще встретимся в главе 7), рассказывает, что в 2002 году, начав исследовать влияние микробов на кишечник, он обнаружил, что в пределах досягаемости нет никого, кто знал бы, как выращивать безмикробных мышей. «Мне пришлось убедить одного лаборанта, ушедшего на пенсию, помочь мне устроить стерильные боксы и научить меня «санитарной инженерии». Вместо устройств из стали и стекла, которые он использовал в свое время (50 лет назад), мы сумели раздобыть чудесные модернизированные боксы с пластиковыми пузырями, содержащими по 4 клетки с мышами. После того как я несколько раз случайно занес в эти боксы грязь, я понял, почему исследователи так редко обращаются к безмикробным подопытным животным»[29].

Спустя десяток лет удалось наладить поточное выращивание безмикробных мышей во многих лабораториях. Мыши с давних пор служат моделями для генетических и биохимических исследований; есть фирмы, поставляющие для лабораторных исследований стандартизированные их породы («линии»). Теперь для лабораторных нужд привлекаются и другие безмикробные существа, в том числе крысы и (последнее приобретение науки) рыба данио-рерио. Эти рыбки замечательны тем, что эмбрионы у них прозрачные, поэтому за их развитием наблюдать гораздо легче.

Впрочем, все эти модели – своего рода компромиссы. В чем-то люди походят на мышей и даже на рыб, но в чем-то, как нетрудно заметить, от них отличаются. Любые результаты, полученные при изучении этих существ, в лучшем случае лишь указывают на то, что может происходить у людей. Возможна ли какая-то более удачная модель, отражающая наши, человечьи, особенности? Во многих отношениях подходит свинья. Она ближе к человеку, чем мышь, по размерам, по характеристикам пищеварительной системы, по общему метаболизму и даже по микробиому. Но давайте признаемся себе: свинья никогда не будет подопытным животным в большом количестве лабораторий. Колин Хилл из университетского колледжа Корка – один из исследователей, предпринимавших попытки задействовать свинью в качестве экспериментального объекта. На конференции 2014 года он предупредил: «Взрослая свинья с диареей – весьма неприятный объект для всех участников эксперимента»[30].

1 ... 10 11 12 13 14 15 16 17 18 ... 81
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?