Критическая масса. Как одни явления порождают другие - Филип Болл
Шрифт:
Интервал:
Легко заметить, что топологическая структура Интернета делает его похожим на природные, естественные объекты. Чаще всего переработку информации в Интернете уподобляют работе мозга, и это сравнение вовсе не метафора, так как Строгац и Ватте показали, что характерные особенности обнаруженных ими «сетей малых миров» действительно имеют аналогии в живой природе. В частности, им удалось доказать, что нейронная сеть нервной системы червя Caenorhabditis elegans (паразитная нематода) имеет именно такую топологию и отличается высокой степенью кластеризации при малых значениях характеристической длины пути между нейронами. Гипотеза о некоторой «естественности» Интернета подтверждается и результатами исследований группы Альберт—Барабаши, продемонстрировавших удивительные аналогии между безмасштабной сетью Интернета и реальными сетями жизнеобеспечения в клетках многих организмов.
Возможно, важнейшей основой жизни является метаболизм, т. е. способность организмов превращать вещества, поступающие из окружающей среды, в энергию и молекулы, необходимые для жизнедеятельности клеток. Например, клеткам человеческого организма необходимы аминокислоты, жиры и сахара, которые мы получаем из продуктов питания, а также витамины, микроэлементы, вода, кислород и многие другие вещества. С помощью ферментов они превращают поступающие извне вещества в новые ферменты, нуклеиновые кислоты, гормоны, высокоэнергетические молекулы и т. п. Последовательности реакций, преобразующих поступающие извне вещества в требуемые организму молекулярные формы, биохимики называют метаболическими цепочками.
Все без исключения такие цепочки являются не линейными, а разветвленными и взаимосвязанными. Поступающее в организм «сырье», например, глюкоза, может быть переработано и использовано во множестве метаболических реакций и процессов, причем высокоэнергетические молекулы, созданные в результате расщепления этого сахара, сами затем используются в качестве источника энергии в других метаболических цепочках. Процессы метаболизма в организме объединяются в сеть химических превращений, где конкретное химическое соединение соответствует вершине графа, а реакции (протекающие в основном с участием ферментов) — ребрам графа, связывающим его вершины друг с другом (рис. 16.6).
Группа Барабаши изучила такие сети метаболизма для 43 самых различных типов живых организмов, от бактерий через растения к высшим формам типа червей, и обнаружила, что во всех случаях функция распределения числа связей является безмасштабной, т. е. вероятность обнаружения узлов с заданным числом связей описывается степенным законом. Это означает, что в сети метаболизма существуют особые центры повышенной связности, играющие принципиальную роль в организации процессов в целом. Молекулы, связанные с такими центрами, и их относительная важность в сети метаболизма оказались одними и теми же для всех живых организмов, что является отражением единства всего процесса эволюции.
Безмасштабная структура метаболических сетей имеет вполне разумное объяснение в рамках эволюционной теории, так как она делает метаболизм относительно нечувствительным к небольшим нарушениям или случайным флуктуациям. Предположим, что в организме произошел сбой в работе одного или двух ферментов, вызванный, например, генетическими дефектами, в результате чего затрудняются или становятся невозможными некоторые важные реакции в сети метаболизма и возникает угроза существованию всего организма в целом. Наличие безмасштабной структуры в такой ситуации позволяет обойти эту сложность и выработать требуемые организму вещества в другой последовательности реакций, что можно считать очень удачным «инженерным» решением природы проблемы «проб и ошибок» в естественном отборе.
С другой стороны, слабость безмасштабных сетей состоит в их чувствительности к хорошо «спланированным» нападениям, целью которых являются узлы сети с высокой связностью, чья гибель приводит к распаду сети. Именно на этом основано действие большинства бактерий. Но это же свойство может быть использовано при разработке лекарств для отражения бактериальной инфекции. Определив «слабые места» бактерий, мы можем направить на них атаку лекарств. Понимание структуры сети метаболизма бактерий станет первым шагом к определению подходящих целей. В этом сценарии мы выступаем в роли цитотеррористов (цито — клетка) и наши намерения, конечно, с нашей, человеческой точки зрения, совершенно оправданны и благи.
В связи со сказанным возникает еще один вопрос: а не являлись ли массовые отключения энергетических сетей, например, в США и Италии в 2003 году следствием топологических неувязок в этих весьма сложных структурах? Хотя, строго говоря, пока никто не задавался вопросом, имеют ли сети электроэнергетики безмасштабную топологию. Барабаши считает, что это предположение имеет право на существование, и пишет по этому поводу: «[Августовские] отключения энергии нельзя объяснить просто сбоями в работе оборудования, небрежностью персонала или ошибками проектирования. Возможно, такие сбои энергетической системы можно связать лишь с тем, что мы не понимаем последствий объединения и глобализации энергосистем в мировом масштабе, то есть игнорируем возможные последствия развития внутренней связности в столь сложных системах»10. Барабаши отмечает, что энергетические сети подвержены каскадным процессам, когда нарушение в одном месте направляет электроэнергию на другие линии, приводя к усилению перегрузки и новым отключениям. «Каскадные отключения характерны для большинства сложных систем».11
Существованию и функционированию социальных сетей угрожают не только намеренное вредительство и аварийные отключения узлов. Размножившиеся в последние годы компьютерные вирусы представляют собой для электронных коммуникаций не меньшую опасность, чем атаки кибертеррористов, поскольку их деятельность менее заметна и ведет не к разрушению Сети, а к захвату наиболее важных узлов связи с последующим «опустошением». В этом случае мы вновь вынуждены констатировать, что достоинства топологии Сети оборачиваются против нее.
Обычно компьютерные вирусы распространяются пересылкой по электронной почте посланий от одного компьютера к другому, аналогично процессу передачи биологических вирусов от одного человека к другому при непосредственном контакте. Установление любой связи между двумя пользователями Сети становится источником потенциальной опасности заражения.
Процессами распространения болезней столетиями занимается огромная область медицины, называемая эпидемиологией, поэтому компьютерщики взяли на вооружение математические модели этой области науки, пытаясь понять механизм распространения компьютерных вирусов. В стандартной эпидемиологической модели все вовлеченные в процесс агенты (личности) в каждый конкретный момент времени могут быть разделены на два класса: здоровые и инфицированные. Здоровые агенты восприимчивы к заражению при контакте, т.е. их общение с больными может приводить к заболеванию с некоторой заданной в модели вероятностью. Одновременно инфицированные агенты могут вновь становиться здоровыми, что не исключает нового заражения. В такой модели можно рассчитать скорость распространения эпидемии, которая определяется отношением вероятностей передачи инфекции и выздоровления.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!