Взрыв мироздания - Олег Фейгин
Шрифт:
Интервал:
В позапрошлом веке в астрономии произошла своеобразная научная революция. Ученые стали сходить с накатанного пути классической астрономии, их перестали интересовать ответы на вопросы типа «где это, как и куда оно движется?» на рельсы астрофизики с вопросами «что это и как оно устроено». Одной из первоочередных задач на этом пути стала задача хотя бы внешнего упорядочивания классификации наблюдаемых во Вселенной звезд. Это и привело к независимому созданию двумя астрофизиками диаграммы, которую сегодня принято в их честь называть диаграммой Герцшпрунга – Рассела (или, сокращенно, «диаграммы ГР», см. цветную вклейку).
Любой звезде на диаграмме Герцшпрунга – Рассела обязательно найдется свое место. «Нормальные» звезды, включая Солнце, расположены в пределах диагональной ветви главной последовательности (место Солнца в главной последовательности вы можете определить по его спектральному бело-желтому цвету). Над главной последовательностью находятся ветви гигантов и сверхгигантов; под ней – ветвь белых карликов. По диаграмме можно проследить и эволюцию звезд. В частности, Солнце представлено в своем нынешнем положении, а пунктиром отмечены его предыстория и дальнейшая судьба.
Звезды бывают множества типов. Есть звезды, диаметр которых в десятки раз превышает диаметр Солнца, и есть звезды размером всего лишь с большой земной город. Есть звезды настолько горячие, что основной цвет в спектре их излучения – фиолетовый, и есть настолько «холодные», что даже темно-красный свет в их спектре выражен крайне тускло.
Диаграмма ГР представляет собой график, на котором по вертикальной оси отсчитывается светимость (интенсивность светового излучения) звезд, а по горизонтальной – наблюдаемая температура их поверхностей. Оба этих количественных показателя поддаются экспериментальному измерению при условии, что известно расстояние от Земли до соответствующей звезды. Смысл диаграммы ГР заключается в том, чтобы нанести на нее как можно больше экспериментально наблюдаемых звезд (каждая из которых представлена соответствующей точкой) и по их расположению определить некие закономерности их распределения по соотношению спектра и светимости.
Отдельно – правее и выше – расположена группа звезд с очень высокой светимостью, не пропорциональной их температуре, которая относительно низка, это так называемые красные звезды-гиганты и сверхгиганты. Условно говоря, они светят, но не греют. Ниже и левее главной последовательности расположены карлики – группа относительно мелких и холодных звезд. Еще раз отметим, что подавляющее большинство звезд относится к главной последовательности, и энергия в них образуется путем термоядерного синтеза гелия из водорода.
Три последовательности на диаграмме ГР строго соответствуют трем этапам жизненного цикла звезд. Например, в левом нижнем углу диаграммы мы видим белых карликов. Это очень горячие звезды – но очень мелкие, размером, обычно, не больше нашей Земли. Поэтому, излучая в космос относительно немного энергии, они, по причине весьма незначительной (на фоне других звезд) площади их поверхностной оболочки, светятся в достаточно ярком спектре, поскольку она оказывается достаточно высокотемпературной.
Распределение ГР носит не случайный характер: по соотношению спектра со светимостью звезды делятся на три астрофизические «последовательности». Из верхнего левого угла в правый нижний тянется так называемая главная последовательность. К ней относится, в частности, и наше Солнце. В верхней части главной последовательности расположены самые яркие и горячие звезды, а справа внизу – самые тусклые и, как следствие, долго живущие.
Вообще, по диаграмме ГР можно проследить весь жизненный путь звезды. Сначала звезда главной последовательности, подобная Солнцу, конденсируется из газо-пылевого облака и уплотняется до создания давлений и температур, необходимых для разжигания первичной реакции термоядерного синтеза. При этом она, соответственно, появляется где-то в основной последовательности диаграммы ГР. Пока звезда горит (запасы водорода не исчерпаны), она так и остается, как Солнце, в основной последовательности, практически не смещаясь. После того как запасы водорода исчерпаны, звезда сначала перегревается и раздувается до размеров красного гиганта или сверхгиганта, отправляясь в правый верхний угол диаграммы, а затем остывает и сжимается до размеров белого карлика, оказываясь слева внизу.
Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе звездообразования, оно происходит в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает критического предела.
В последующем возможны два сценария развития событий: концентрация материи в больших структурах с последующим формированием в них звезд или формирование звезд с последующим объединением их в большие структуры.
Пока еще неизвестно, какой из них был реализован и что в действительности являлось источником энергии для первых источников света, осветивших Вселенную, – звезды с их термоядерным синтезом или излучение, вызванное падением материи на черные дыры.
Черные дыры могут играть важную роль на начальной стадии формирования галактик, собирая материю вместе посредством своей мощной гравитации. Новые открытия супермассивных черных дыр в центрах трех ближайших эллиптических галактик только прибавляют в этом уверенности.
Такая связь, естественно вызывает вопрос и о том, что появилось сначала – галактика или черная дыра, хотя последние данные в большей степени указывают на то, что именно черные дыры формируют вокруг себя галактики. Стало быть, есть надежда: спор по поводу того, что появилось раньше – «курица» (галактика) или «яйцо» (массивная черная дыра), по всей видимости, будет разрешен уже в обозримом будущем.
Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчивают жизнь весьма банально. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх – и под их воздействием звезда начинает сжиматься и уплотняться.
Этот процесс приводит к двоякому эффекту: температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий – своего рода «пепел» затухающей первичной реакции нуклеосинтеза – вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, – один из ключевых моментов жизненного цикла звезд.
При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но поскольку теперь эта энергия излучается через значительно большую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!