Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - Макс Тегмарк
Шрифт:
Интервал:
Что же представляет собой фундаментальное свойство всех этих предметов, которое позволяет нам использовать их в качестве памяти, то есть накопителей информации? Ответ заключается в том, что каждому из них доступно большое количество устойчивых состояний, в которых они могут находиться очень долгое время — достаточно долгое, чтобы извлечь закодированную информацию, как она только потребуется. В качестве простого примера представьте себе холмистую местность с шестнадцатью отделенными одна от другой ложбинами и небольшой мячик, как показано на рис. 2.3. Когда мячик скатывается с холма в какую-то из ложбин, это будет одна из тех шестнадцати, и коль скоро он может там находиться долго, его нахождение там можно использовать для запоминания одного из шестнадцати чисел (от 1 до 16).
Это запоминающее устройство довольно надежно, так как даже если его будут сотрясать какие-то внешние силы, мячик, вероятно, останется в той ложбине, куда вы его поместили изначально, и вы всегда сможете сказать, какое из чисел было там сохранено. Причина стабильности такой памяти заключается в том, что для извлечения мячика из заключающей его ложбины требуется больше энергии, чем сообщаемая ему случайными сотрясениями. У той же идеи могут быть и более общие реализации, чем просто катающийся мячик: энергия сложной физической системы может определяться целым рядом ее механических, химических, электрических и магнитных свойств; и до тех пор, пока энергия воздействия на систему недостаточна для изменения ее состояния, которое она должна запомнить, состояние будет устойчивым. Этим объясняется, почему у твердых тел много устойчивых состояний, а у жидких и газообразных — нет: если вы выгравируете чье-то имя на золотом кольце, то и по прошествии многих лет оно будет там, так как для изменения формы золота требуется значительная энергия, но если вы выгравируете его же на поверхности пруда, информация пропадет за секунду, потому что поверхность воды изменяется практически без энергетических затрат.
Рис. 2.3
Роль запоминающего устройства хорошо выполняют те физические объекты, у которых много стабильных устойчивых состояний. Шарик слева может закодировать четыре бита информации, соответствующих одной из шестнадцати (24 = 16) впадин рельефа. Также четыре бита могут хранить вместе четыре шарика справа — по одному биту на каждого.
У простейшего запоминающего устройства всего лишь два устойчивых состояния (см. рис. 2.3) Поэтому мы можем считать, что оно запоминает один бинарный знак (сокращенно «бит») — например ноль или единицу. Информация, сохраненная более сложным устройством, может быть представлена словно бы сохраненной во множестве бит: например, четыре бита, взятые вместе, как показано на рис. 2.3 (справа), могут находиться в одном из 2 × 2 × 2 × 2 = 16 различных состояний — 0000, 0001, 0010, …, 1111, так что у них всех вместе тот же самый объем памяти, что и у системы с 16 различными состояниями (слева). Поэтому мы можем думать о битах как об атомах информации, мельчайших ее частичках, которые не могут быть разделены дальше, но которые могут объединяться, представляя любое ее количество. Например, я только что напечатал слово «слово», и мой ноутбук тут же превратил его в своей памяти в последовательность из пяти трехзначных чисел: 241 235 238 226 238, представив каждое из них в виде 8 бит (каждой букве нижнего регистра присваивается число 223 плюс его порядковый номер в алфавите). Как только я нажимаю на клавишу «с» своего ноутбука, эта буква тут же появляется на мониторе, и ее изображение тоже состоит из бит, причем 32 бита определяют цвет каждого из миллиона пикселей монитора.
Поскольку двухуровневые системы легче и в производстве, и в управлении, большинство современных компьютеров хранят информацию в битах, хотя существует обширнейшее многообразие в способах физического воплощения каждого из них. На DVD каждому биту соответствует наличие или отсутствие микроскопической ямки в определенном месте его пластиковой поверхности. На жестком диске биту соответствует одна из двух возможных поляризаций магнитного момента в данной точке. В оперативной памяти моего ноутбука биту соответствуют определенные конфигурации некоторых электронов, от которых зависит, заряжено или нет устройство под названием микроконденсатор. Некоторые биты очень хорошо подходят для того, чтобы пересылать их с места на место, иногда даже со скоростью света: например, в оптоволокне при передаче вашего электронного сообщения биту соответствует ослабление или усиление лазерного луча в определенный момент.
Инженеры предпочитают кодировать биты в системах, обеспечивающих не только устойчивость и простоту считывания (как на золотом кольце), но и простоту записи: изменение состояния вашего жесткого диска требует значительно меньших затрат энергии, чем гравирование по золоту. Они также предпочитают системы, с которыми легко работать и которые достаточно дешевы при массовом производстве. Но помимо этого их совсем не интересует, каким именно физическим объектом бит был представлен — как, впрочем, в большинстве случае и вас, потому что это и вообще неважно! Если вы пересылаете электронной почтой документ своему другу, чтобы он вывел его на печать, то информация последовательно быстро копируется с магнитных диполей жесткого диска в электрические заряды оперативной памяти, оттуда в радиоволны вашей Wi-Fi-сети, потом в переменное напряжение в цепях вашего роутера, лазерные импульсы в оптоволокне и, наконец, передается молекулам на поверхности бумаги. Иными словами, информация живет собственную жизнь, независимо от своего физического субстрата! В самом деле, нас-то обычно интересует только этот, не зависящий от субстрата, аспект информации: если ваш друг позвонит спросить, что это за документы вы ему послали, он, скорее всего, не будет интересоваться перепадами напряжения и смещениями молекул. А для нас это первый звоночек: как такая неосязаемая вещь, как разум, может оказаться воплощенной в сугубо осязаемой физической материи, а скоро мы увидим, что идея независимости от субстрата гораздо глубже, включая в себя кроме информации также вычисления и обучение.
Из-за этой самой независимости от субстрата изобретательные инженеры то и дело заменяют запоминающие устройства в наших компьютерах все более совершенными, основанными на новых технологиях, но это совсем не заставляет нас менять что-либо в программном обеспечении компьютеров, их «софте». Как видно на рис. 2.4, результаты потрясающие: на протяжении последних шести десятилетий примерно каждые два года компьютерная память становится вдвое дешевле. Жесткие диски стали дешевле более чем в 100 миллионов раз, а разновидности памяти с быстрым доступом, применяемые не столько просто для хранения, сколько для выполнения вычислений, стали сейчас дешевле аж в 10 триллионов раз! Если бы вам удавалось получить такую скидку в 99,99999999999 % на каждую свою покупку, то вы смогли бы купить всю недвижимость Нью-Йорка менее чем за 10 центов, а все золото, когда-либо добытое на Земле, чуть более чем за доллар.
Рис. 2.4
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!