📚 Hub Books: Онлайн-чтение книгРазная литератураВсё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов

Шрифт:

-
+

Интервал:

-
+
1 ... 14 15 16 17 18 19 20 21 22 ... 202
Перейти на страницу:
и спутник находится ближе к центру вращения, чем Луна. Мы снова ищем такую точку, где разность двух сил притяжения позволяет, находясь ближе к Земле, чем Луна, не обгонять Луну, а оставаться на линии Земля – Луна, из-за чего две силы притяжения продолжают вычитаться, из-за чего скорость движения по орбите меньше, чем если бы Луны не было, из-за чего тело все время остается на линии Земля – Луна, из-за чего оно испытывает настолько меньшую силу притяжения к центру, что движется ровно настолько медленнее, чтобы… Эта «самозацикливающаяся» фраза снова описывает уравнение. Математический факт с непосредственным приложением к космонавтике состоит в том, что решение у этого уравнения есть, и оно определяет единственную точку между Землей и Луной – точку L1 на рис. 2.3. Это – подходящее место для космической базы: прекрасные условия радиосвязи и с Землей, и с Луной плюс определенные удобства путешествия к обоим телам. Это, собственно говоря, перевалочная точка: имея целью Луну, но долетев с Земли сначала на L1, мы дополнительно потратимся на эту «остановку» очень незначительно. Поэтому отсылать, например, грузы в L1 и хранить их там до момента, когда они понадобятся на Луне, можно практически без лишних затрат топлива по сравнению с прямой доставкой, но имея при этом преимущество в логистике.

L1 – перевалочная точка

Наконец, вариант СЗЛ означает, что спутник находится с противоположной стороны от Земли, чем Луна. И Земля, и Луна притягивают его в сторону центра масс системы Земля – Луна, т. е. в сторону центра вращения; притяжение Луны при этом сказывается слабо из-за большого расстояния до нее, но все же немного добавляет к притяжению в сторону центра масс (и главное – не утягивает спутник куда-то в сторону). Опять-таки требуется решить уравнение, говорящее, что совместное притяжение Земли и Луны позволяет обращаться вокруг Земли синхронно с Луной; этим однозначно определяется расстояние от центра масс (а потому и от центра Земли). Это точка L3 на рис. 2.3. Она оказывается совсем немного дальше от центра масс (примерно в 1,017 раза дальше), чем Луна, но немного ближе к центру Земли, чем расстояние от него до Луны.

Разумеется, точки Лагранжа имеются не только в системе Земля – Луна. Неважно, как называются два массивных тела, – математика одна и та же, только относительные расстояния от центра до L1, L2 и L3 несколько различаются в зависимости от соотношения масс двух больших тел. В системе Солнце – Земля практически важны две точки Лагранжа: уже знакомая нам L2 (дом для космических телескопов, как мы очень скоро увидим) и L1 между Солнцем и Землей (рис. 2.4). Из точки L1 в системе Солнце – Земля открывается ничем не затемняемый постоянный вид на Солнце с одного и того же расстояния, и там работают приборы, которые именно в этом и нуждаются. Среди них – космическая обсерватория по наблюдению Солнца SOHO (Solar and Heliospheric Observatory Satellite). Другой аппарат, ACE (Advanced Composition Explorer), использует особенности этой точки Лагранжа, пожалуй, в еще большей мере: находясь «вверх по течению» от Земли вдоль потока солнечного ветра, он в реальном времени передает данные о магнитном поле и о потоке частиц, летящих от Солнца, что позволяет уточнять прогнозы космической погоды – влияния Солнца на околоземное пространство (магнитосферу и ионосферу). На смену этому ветерану точки L1 уже запущен аппарат DSCOVR (Deep Space Climate Observatory), по совместительству – автор известных фотографий, показывающих прохождение Луны на фоне Земли.

Рис. 2.4. Точки Лагранжа L1 – L5 в системе Солнце – Земля. Здесь изображено, по существу, то же самое, что на рис. 2.3, но для другой пары небесных тел. Луна на этом рисунке не играет никакой роли

Точка L3 в системе Солнце – Земля (см. рис. 2.4) не нашла себе практических применений (и правда, чего ради стоило бы тащиться в такую даль?), но оказалась богатой темой для фантастических нарративов разного рода; не счесть замышляющих что-то инопланетян или других заговорщиков, желающих там обосноваться. Впрочем, трудно оспорить высказывание, что если какая-то развитая цивилизация [существует и] имеет цель не просто присутствовать в Солнечной системе, но еще и пребывать на фиксированном расстоянии от Земли и если при этом они желают оставаться на своем корабле, не высаживаясь на поверхность, но не хотят тратить много топлива, – то лучшего места, чем лагранжевы точки, не найти. Но на меня производит, пожалуй, большее впечатление не предполагаемый галактический заговор, а тот факт, что к моменту начала космических полетов они (эти зеленые человечки), без сомнения, открыли бы все пять этих точек, уж не знаю, как они там у них называются.

Впрочем, мы еще не знаем, что такое точки L4 и L5, у нас открытые Лагранжем в дополнение к первым трем, известным Эйлеру. Определить их положение, когда ответ уже известен, легче легкого: измеряем расстояние от Солнца до Земли и воображаем равносторонний треугольник, одна из сторон которого как раз и соединяет Солнце и Землю (см. рис. 2.4). У равностороннего треугольника все стороны равны, поэтому расстояния от его третьей вершины до Солнца и до Земли одинаковы. Это важно! В этой вершине притяжение Солнца во столько раз сильнее, чем притяжение Земли, во сколько раз Солнце массивнее. А дальше следует несложное упражнение в геометрии: две такие силы притяжения складываются так, что в итоге тело в точке L4 испытывает суммарную силу, направленную в точности к центру масс системы Солнце – Земля, а по величине эта сила ровно такая, чтобы поддерживать обращение вокруг этого центра масс на заданном расстоянии – на том самом, которое определяется из нашего треугольника. С точкой L5 все то же самое, только если L4 опережает Землю в ее движении вокруг Солнца, то L5 отстает. Обе – на один и тот же угол в 60°.

Точки Лагранжа – это некеплеровы орбиты

Итог про точки Лагранжа: это такие положения в системе двух тел, где совместное притяжение этих тел способно поддерживать синхронное обращение малого третьего тела. Это ответ на заданный выше вопрос, но слово «точка», как мы видим, понимается тут несколько вольно: каждая из точек Лагранжа вообще-то задает орбиту, потому что вся картинка на рис. 2.4 вращается как единое целое; это буквально точка

1 ... 14 15 16 17 18 19 20 21 22 ... 202
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?