Энциклопедия будущего - Иван Сирфидов
Шрифт:
Интервал:
• Динамическое позиционирование червоточины – исключая планетарную гиперсвязь, у остальных двух её видов (межпланетной и межзвёздной) приёмник и передатчик всегда перемещаются относительно друг друга, на скоростях от десятков до сотен километров в секунду, так как и звёздные системы и планеты движутся, а последние ещё и вращаются вокруг своей оси. Требуется постоянно динамически изменять координаты выходного конца червоточины, дабы постоянно удерживать его на принимающем устройстве.
• Компенсация релятивистских искажений – характерно только для межзвёздной гиперсвязи. При значительной (сотни км/с) скорости движения приёмника и передатчика относительно друг друга так или иначе на пересылаемом сигнале начинают сказываться релятивистские эффекты, прежде всего сжатие пространства и замедление времени. Помимо прочего, оба указанных эффекта заметно усложняют динамическое позиционирование.
• Стабилизация червоточины – защита её от схлопывания, разрыва, спирального многомерного скручивания. Особенно проблематична при межзвёздной гиперсвязи. Форма червоточины никогда не бывает статичной, её тоннель постоянно стремится к деформации и искривлению, она растягивается и сжимается, её отдельные участки внутренних и внешних стенок могут двигаться относительно друг друга, изменяться по плотности и прочим физическим характеристикам, в них могут возникать вихревые, волновые, циклические и т.п. разрушительные явления. Наиболее неприятен квантовый резонанс, когда стенки тоннеля входят в состояние устойчивых колебаний на релятивистских частотах.
• Шумоподавление – при всех протекающих в червоточине процессах она и сама сильно «фонит», кроме того, на шумовую ситуацию в ней оказывают влияние внешние электромагнитные и гравитационные поля в пространстве между входной и выходной точками её тоннеля (сильнее всего это сказывается на межзвёздных коммуникациях). В результате она заметно искажает и заглушает пропускаемый через неё сигнал, делая поистине нетривиальной задачу выделить его.
• Передача сигнала – квантовые размеры диаметра тоннеля червоточины, разнообразные процессы в ней и нестабильность её формы затрудняют осуществление через неё информационного обмена. Поначалу, в прошлые эпохи, это делалось оптически – при помощи пропуска пучков фотонов. В настоящий описываемому момент технологии гиперсвязи тяготеют к пересылке данных посредством волновой интерференции на стенках тоннеля.
• Детектирование (выделение) сигнала – транслируемые фотоны засечь несложно, для этого сгодится любой грошовый оптический сенсор, однако пропускная способность (число бит, передаваемых в секунду) червоточины при световом способе информационного обмена крайне низка, для выделения же полезного сигнала, пересылаемого волновым воздействием на стенки её тоннеля, который имеет квантовые размеры и по сути представляет из себя квантовую сингулярность, требуется исключительно мощное высокотехнологичное детекторное оборудование запредельной чувствительности.
Существует два принципиально разных способа генерации червоточин: симметричный и асимметричный. Симметричный предполагает коммуникацию между двумя генерирующими приёмно-передающими системами, каждая из которых стабилизирует свой конец тоннеля червоточины – тот становится как бы пространственно привязанным к оборудованию с обоих сторон, благодаря чему не нуждается в динамическом позиционировании – с какой бы скоростью вступившие в контакт гипер устройства не двигались относительно друг друга, формируемый ими тоннель будет всегда оставаться строго меж ними, ведь они фактически и служат, условно говоря, его «выходными отверстиями». Неудобство здесь в двойной дороговизне – для осуществления связи требуется две полноценных передающих системы вместо одной. Асимметричный способ соответственно подразумевает пару передатчик-приёмник, обязанности по генерации, поддержанию и позиционированию червоточины в этом случае лежат исключительно на передатчике, приёмник тоже может пересылать через неё информацию на другой конец её тоннеля, но сам создавать и стабилизировать её неспособен, фактически являя собой просто детектор. Как следствие, удаётся организовать межпространственный информационный обмен заметно меньшими финансовыми затратами, однако возникает зависимость принимающей стороны от передающей – только последней доступно инициировать удалённое соединение, только она в состоянии «позвонить», но не наоборот. Кроме того, она сильно усложняется технически и вырастает в стоимости за счёт необходимости в оборудовании динамического позиционирования. Зато приёмник при асимметричной коммуникации может контактировать одновременно с разными передатчиками, со многими сразу, тогда как при симметричной передача данных всегда происходит строго между двумя абонентами – один на один.
Теперь остановимся чуть поподробней на проблеме позиционирования. Основная сложность с ним заключена в необходимости точно знать координаты приёмной системы, чтобы создать червоточину, чётко выходящую на её детектор. При расстояниях в десятки и сотни триллионов километров, с учётом того, что во вселенной всё движется – не только космические корабли, но и планеты и звёзды, произвести подобные расчёты с точностью до миллиметров чертовски сложно. Особенно, если скорость приёмника и передатчика относительно друг друга велика и на них начинают сказываться релятивистские эффекты. Казалось бы, раз симметричные технологии не нуждаются в позиционировании, это прекрасный выход из ситуации, пусть они и дороже асимметричных. Но так только кажется. Симметричная связь требует одновременного запуска генерации тоннелей червоточин от обоих участников коммуникации (ведь те надо стабилизировать с обоих концов), однако в релятивистских системах синхронность относительна, синхронизировать их можно лишь посредством гиперсвязи, иными словами, чтобы установить симметричное соединение, нам в общем случае предварительно придётся вступить в контакт асимметричным способом и приказать принимающей стороне подготовиться к симметричному подключению. Указанные сложности вовсе не обессмысливают симметричную связь, так или иначе она заметно устойчивее и обладает рядом других преимуществ, и тем не менее, без оборудования для динамического позиционирования, характерного только для асимметричных коммуникаций, установить её почти нереально (исключение – если принимающая сторона в постоянной готовности, всегда ожидает конкретного подключения). В результате гиперсвязь в любой её форме становится практически неосуществима для объектов с переменной траекторией, координаты которых нельзя точно вычислить. Проще говоря, звездолёт может вызвать по ней планету, а планета звездолёт как правило нет. Потому что текущие координаты планет посчитать не проблема, а координаты межзвёздного корабля попробуй высчитай, даже если известны его курс и скорость. Надо признать, и звездолёту не так-то просто рассчитать координаты планеты и приёмника на её поверхности с точностью до сантиметров. Всегда есть погрешность определения своей позиции, относительно которой пространственное положение других космических тел вычисляются, да и невозможно учесть все космологические и релятивистские факторы, влияющие на их и собственное движение. Однако существует методология, позволяющая гиперпередатчикам динамически наводиться на планетарные приёмники. Всякая обжитая (заселённая людьми) планета есть источник радиочастотных шумов, и кроме того всякая специально распространяет вокруг себя сигнал наведения – именно для облегчения гипер коммуникаций. Если даже передатчик корабля промахнётся, не важно, на километр или световой год, по характеру и интенсивности шума в червоточинах он сможет уточнить координаты приёмного устройства и открыть межпространственный микротоннель гиперсвязи снова на порядок ближе к оному. Так с каждым новым циклом наведения точность позиционирования увеличивается, пока не
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!