📚 Hub Books: Онлайн-чтение книгДомашняяГолая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан

Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан

Шрифт:

-
+

Интервал:

-
+
1 2 3 4 5 6 7 8 9 10 ... 93
Перейти на страницу:

Следует ли финалисту отказаться от своего прежнего выбора и указать на Дверь № 2?

Отвечаю: да, следует. Почему? Объяснение найдете в главе 5½.

Парадокс статистики в том, что она вездесуща – начиная с так называемых средних показателей и заканчивая голосованием на выборах президента, – но при этом пользуется репутацией неинтересной и малопонятной. Многие книги и курсы по статистике перегружены математическими формулами и специальным жаргоном. Поверьте, все эти технические подробности важны и по-своему привлекательны, но для человека, который не страдает избытком интуиции и воображения, выглядят как абракадабра, способная вызвать исключительно отторжение. Если вы не понимаете, зачем изучать статистику, то лучше не беритесь. Именно поэтому в каждой главе книги я пытаюсь ответить на основной вопрос, который безуспешно задавал в школе своему преподавателю математики: зачем все это нужно лично мне?

Эта книга об интуиции. Я старался по возможности избегать употребления математических формул, уравнений и графиков, в тех же случаях, когда без них нельзя было обойтись, я преследовал четкую конкретную цель. Множество приведенных мною примеров призваны убедить вас в целесообразности изучения этой дисциплины. Статистика может быть действительно интересной и по большей части не так сложна, как кажется поначалу.

Идея написать эту книгу родилась через несколько лет после моей неудавшейся попытки постичь сущность математического анализа под чутким руководством миссис Смит. В магистратуре мне предстояло изучать экономику и политологию. Но прежде чем читать нам курс экономики, меня (что неудивительно) и большинство моих сокурсников направили в так называемый математический лагерь, чтобы мы ликвидировали там свои многочисленные пробелы в познании этого предмета. На протяжении трех недель мы чуть ли не круглосуточно изучали математику в плохо проветриваемом полуподвальном помещении.

В какой-то из таких дней я как никогда был близок к тому, что принято называть прозрением. Преподаватель пытался объяснить нам условия, при которых сумма бесконечного ряда сходится к конечному числу. Постарайтесь следить за ходом моих рассуждений, а я попробую описать суть данной концепции. (Возможно, сейчас вы испытываете те же ощущения, что и я, сидя в душном полуподвальном помещении.) Бесконечный ряд представляет собой последовательность чисел, уходящую куда-то в… бесконечность, например 1 + ½ + ¼ + ⅛ + … Многоточие означает, что эта последовательность продолжается до бесконечности.

На этом месте мы впали в ступор. Используя какое-то доказательство (какое именно, уже не помню), преподаватель пытался убедить нас, что хоть такая последовательность чисел и может продолжаться до бесконечности, тем не менее она все равно сойдется (приблизительно) к какому-то конечному числу. Один из моих одноклассников, Уилл Уоршоер, сильно в этом сомневался (собственно, как и я). Разве так бывает?

Затем меня осенило: мне показалось, я понял, что именно пытается втолковать нам преподаватель. Я повернулся к Уиллу и изложил ему версию, которая только что возникла у меня в голове.

Допустим, вы стали ровно в двух футах от стены. Теперь придвиньтесь к стене на половину этого расстояния (1 фут). В результате вы окажетесь в одном футе от стены.

Еще раз придвиньтесь к стене на половину оставшегося расстояния (6 дюймов, или ½ фута). Находясь в 6 дюймах от стены, повторите описанные выше действия (придвиньтесь к стене на 3 дюйма, или ¼ фута). Выполните их еще раз (придвиньтесь к стене на 1½ дюйма, или ⅛ фута). И так далее.

Постепенно вы почти упретесь в стену. (Например, окажетесь на расстоянии 1/1024 дюйма от нее, а затем придвинетесь еще на половину этого пути, или на 1/2048 дюйма.) Но ключевым здесь является слово почти: сколько бы раз вы ни повторяли это действие, расстояние между вами и стеной никогда не станет в точности равно нулю, поскольку, по определению, каждое такое продвижение приближает вас к стене лишь на половину оставшегося расстояния. Иными словами, вы все время будете оказываться бесконечно близко к стене, но никогда не упретесь в нее. Если измерять ваши продвижения в футах, то соответствующую последовательность можно описать как 1 + ½ + ¼ + ⅛ …

Именно в этом и заключалось мое прозрение. Сколько бы вы ни продвигались таким способом к стене (а вы будете делать это до бесконечности), совокупное расстояние, пройденное вами, не может превышать 2 футов, то есть вашего исходного расстояния от стены. С математической точки зрения, совокупное расстояние, пройденное вами, можно приравнять к 2 футам, что весьма удобно в плане вычислений. Математик сказал бы, что сумма бесконечного ряда 1 фут + ½ фута + ¼ фута + ⅛ фута … сходится к 2 футам, то есть именно то, что пытался объяснить нам преподаватель.

Что показательно, в процессе объяснения мне удалось убедить в правильности моей версии не только Уилла, но и самого себя. Я уже не помню дословно математического доказательства того, что сумма бесконечного ряда при определенных условиях может сходиться к конечному числу (хотя могу найти его в соответствующем учебнике по математике), но исходя из собственного опыта готов утверждать, что благодаря интуиции математика и другие технические детали становятся гораздо понятнее (но необязательно наоборот).

Задача этой книги – доходчиво объяснить самые важные статистические концепции не только тем, кому приходится осваивать их в плохо проветриваемых, душных помещениях, но и тем, кого влечет магия чисел.

Хотя выше я был вынужден признать, что базовые инструменты статистики, к сожалению, менее интуитивно понятны и доступны, чем следовало бы, сейчас я намерен сделать несколько на первый взгляд противоречащее этому заявление, а именно: статистика может быть более чем доступной для понимания в том смысле, что каждый из нас, вооружившись исходными данными и компьютером, способен выполнить сложные статистические выкладки, нажав буквально несколько клавиш. Однако в случае, если исходных данных недостаточно или статистические методы используются некорректно, появляется риск, что наши выводы не только могут ввести нас в заблуждение, но и оказаться потенциально опасными. Рассмотрим следующую гипотетическую новость из интернета: «Люди, которые делают короткие перерывы в работе в течение дня, имеют гораздо больше шансов умереть от рака». Представьте появление на экране такого сообщения, когда вы занимаетесь веб-серфингом. Согласно весьма впечатляющим результатам обследования 36 000 работников (огромный массив данных, не правда ли?!), у тех, кто выходил из офиса на регулярные десятиминутные перерывы в течение каждого рабочего дня, вероятность заболевания раком в последующие пять лет оказалась на 41 % выше, чем у тех, кто офисы не покидал. Понятно, что узнав такую новость, мы обязаны как-то на нее реагировать: возможно, провести общенациональную кампанию за запрет коротких перерывов в течение рабочего дня.

А может, следует подойти к проблеме с другой стороны и задуматься над тем, чем именно обычно занимаются работники во время таких десятиминуток? Не мне вам рассказывать, что многие кучкуются неподалеку от входа в офисное помещение, покуривая сигареты (и создавая при этом облако дыма, через которое вынуждены проходить те, кто входит или выходит из здания). Смею предположить, что именно сигареты, а не кратковременные перерывы в работе, являются основной причиной раковых заболеваний. Большинству читателей этот пример покажется абсурдным, но могу вас заверить, что многие статистические умозаключения, встречающиеся в реальной жизни, оказываются не менее абсурдными после их тщательного анализа.

1 2 3 4 5 6 7 8 9 10 ... 93
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?