Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе - Тим Филлипс
Шрифт:
Интервал:
В реальной жизни подобной точности не бывает никогда. Поэтому при построении прогнозов на основании фактов уравнение будет выглядеть скорее следующим образом, когда мы учитываем множество разных факторов, влияющих на значение y, но не можем измерить их все:
y = a + b1x1 +b2x2 +… + погрешность.
В данном случае «погрешность» не означает, что вы сделали ошибку, это просто способ обозначить совокупность всех других факторов, которые могут оказывать влияние на значение y, которые вы не смогли измерить, и игнорировать их. Желательно, чтобы эта погрешность была минимальной, но она необходима для анализа всех плюсов и минусов, потому что обычно нас интересует: «А если мы добавим немножко этого, то что получится?» В случае с расчетами британского правительства можно было игнорировать другие факторы, влияющие на повышение сбора налогов при повышении пошлины на сигареты на 1 %, но можно предположить, что правительство не получило бы дополнительные налоговые сборы в объеме $330 млн, если бы подняло пошлину на сигареты на 10 %. Скорее всего, это привело бы к тому, что покупатели ограничили бы свои расходы, бросили курить вообще, начали бы покупать табак, который не облагается таможенной пошлиной, и так далее. Мы свели принятие решения к вероятному влиянию одного фактора на другой единственный фактор.
Стоит ли идти в бар?
Когда я решаю, хочу ли я вечером пойти в бар, это зависит от многих обстоятельств. Я думаю, а кто еще пойдет, а в какой именно бар. Кроме того, это зависит еще от погоды, от того, насколько тяжелым у меня выдался день на работе, от моего финансового положения, от расположения бара и так далее.
При этом мы чудесным образом постоянно принимаем решения и обходимся без построения графиков и диаграмм. Часто мы успешно справляемся с выбором фильма, который хотим посмотреть, и без помощи рекомендательного алгоритма компьютера. В реальной жизни мы воплощаем несовершенную версию уравнения y = a + bx на основе эвристических правил[21], навешиваемых ярлыков, которые действуют быстро, но не всегда правильно. Например, нам попадается плохой фильм или мы скучаем на вечеринке, и мы сожалеем о том, что не выбрали что-то другое. «А ведь казалось, что это такая замечательная идея, – думаем мы. – Ну ладно, учту на будущее». Эвристическое правило оказалось не на высоте. Мы сделали вывод из ситуации и изменили наше отношение, чтобы в следующий раз поступить иначе.
В бизнесе эвристический подход выражается в том, что вы поддерживаете какие-то решения скорее потому, что они кажутся вам удачными, а не потому, что вы опираетесь на проверенные факты. Если опираться только на факты, то можно завязнуть на стадии анализа данных. Так как же научиться принимать хорошие решения, даже если у вас нет степени по эконометрике?
1. Если какое-то решение очевидно, действуйте. Это простой принцип, но ему редко следуют. Часто на совещаниях при решении какого-то вопроса мы не можем сдвинуться с места из-за отсутствия информации, которая при всей своей интересности в любом случае не повлияла бы на решение. Например, вам нужно сделать сайт и вы решаете, стоит ли нанять для выполнения этой работы Билла. И тут кто-то предлагает подождать недельку, потому что тогда освободится Эмма и можно будет вернуться к обсуждению этого вопроса. Стоп! Если бы у Эммы была возможность взяться за работу сегодня, вы бы все равно остановили выбор на кандидатуре Билла? Если да, то принимайте решение не откладывая в долгий ящик.
2. Менее жесткая версия этого принципа также поможет вам принимать решения. Что больше: затраты на получение нужной вам информации (потраченное время, неудобства, возможно, необходимость платить за данные) или потенциальная ее ценность, необходимая для повышения качества вашего решения? Если первое, расслабьтесь. Приз Netflix наглядный тому пример. Победители предложили продвинутое решение, но их улучшения так никогда и не были реализованы. Почему? Потому что дополнительная точность не оправдывала тех технических усилий, которые требовались для осуществления этой идеи.
3. Исключайте варианты путем сравнения. Если у вас есть пять возможных вариантов, не пытайтесь сравнивать все сразу, сравнивайте по парам, опираясь на четкий набор критериев. Если вариант А лучше, чем вариант В, нет необходимости сравнивать варианты В и С, потому что для принятия решения важно, какой из вариантов – А или С – устроит вас больше.
4. Если вы уверены только в каком-то одном факторе, измените его и подождите, пока у вас не появится новая информация, чтобы взяться за другие аспекты. Это не идеальный вариант для получения оптимального результата, но это один из способов двигаться вперед, используя данные. Если вы заняты крупным проектом с множеством меняющихся составляющих и, исходя из находящихся в вашем распоряжении данных, понимаете, что изменение одного фактора, притом что все другие останутся неизменными, – это хорошее решение, вносите это изменение и анализируйте следующую меняющуюся составляющую в следующем месяце. Это принцип гибкой методологии разработки (agile), о которой мы поговорим подробнее в следующей части.
Понимание, как собирать и анализировать данные, лишь половина дела. Знание, как использовать их, чтобы прояснить ситуацию, а не окончательно всех запутать, – это дополнительный навык, который, возможно, еще более ценен.
Самые лучшие данные иногда могут быть хуже, чем полное их отсутствие.
Эффективность любого решения зависит от времени принятия и его верности. Возьмем ценообразование. Ежегодно в Великобритании торговые сети запускают в продажу около 8000 новых продуктов. Только представьте: по 30 единиц в день. А фактором успеха или неудачи товара может стать крошечная разница в цене.
К сожалению, нередко мы узнаем о провале, когда уже слишком поздно что-то предпринимать. Например, что план продвижения точно не принес результатов, вы узнаете спустя три месяца – информация, конечно, интересная, но бесполезная. Гораздо полезнее было бы узнать об этом, пусть и с меньшей долей уверенности, спустя три недели, а еще лучше – через три дня.
Мы с вами подробно рассмотрели, что может повлиять на надежность данных, полученных в результате исследований: маленькая или нерепрезентативная выборка, исследования по электронной почте и погрешности в измерениях. При наличии времени и должных усилиях все эти проблемы можно решить или сильно уменьшить их влияние, но может оказаться, что подобная точность и не нужна.
Что делать, если скорость получения данных важнее, чем их правильность? Основной принцип: не замедляйте процесс, пытаясь собрать слишком много данных. Например, если единственное, что вас интересует, – это ответ на вопрос «Вы предпочитаете А или В?», то, возможно, не стоит пытаться выяснить, почему одно лучше другого или насколько сильнее предпочтение респондентов. Часто для принятия решения бывает достаточно одного-двух вопросов или выяснения одного фактора.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!