📚 Hub Books: Онлайн-чтение книгРазная литератураПолеты воображения. Разум и эволюция против гравитации - Ричард Докинз

Полеты воображения. Разум и эволюция против гравитации - Ричард Докинз

Шрифт:

-
+

Интервал:

-
+
1 ... 16 17 18 19 20 21 22 23 24 ... 42
Перейти на страницу:
следовательно, избежать сваливания. Кроме того, благодаря предкрылкам сваливание начинается при большем угле набегающего потока. При нормальном полете предкрылки обычно аккуратно сложены и убраны. Пилоты приводят их в действие во время взлета и посадки, когда угол набегающего потока велик, а скорость самолета мала. У современных авиалайнеров иногда изящно отогнут кончик крыла. Это снижает и турбулентность, и лобовое сопротивление воздуха, и некоторые птицы тоже отгибают кончики крыльев.

И САМОЛЕТЫ, И ПТИЦЫ ИМЕЮТ ДЕЛО С ОДНИМИ И ТЕМИ ЖЕ ЗАКОНАМИ ФИЗИКИ

И находят для одних и тех же задач похожие, но все же разные решения.

От сваливания страдают не только самолеты. Птицы – живые воздушные судна, и они тоже ему подвержены. Есть ли у них предкрылки, как у самолетов? В некотором роде. У многих парящих птиц образуются заметные зазоры между перьями на кончиках крыльев, и они, похоже, играют ту же роль. Элегантный пример – крылья грифов и орлов. Их огромные маховые перья первого порядка на внешней кромке крыла растопыриваются, словно лопасти вентилятора, и образуют большие промежутки. Поскольку перья очень велики, каждое из них играет роль миниатюрного крыла или предкрылка. Особенно это важно для тех птиц, которые поднимаются по спирали внутри термика, птице нужно описывать небольшие круги, чтобы случайно не вылететь из термика. Поэтому внешнее крыло движется быстрее внутреннего, которое таким образом дает меньше подъемной силы и рискует сваливанием. Здесь необычайно полезны растопыренные перья на конце крыла, которые служат предкрылками для того крыла, которое находится ближе к центру термика.

Когда инженеры совершенствуют крылья самолетов, они часто испытывают свои проекты (обычно миниатюрные модели) в аэродинамической трубе. Вместо того чтобы разгонять модель до большой скорости в воздухе, они направляют на неподвижный самолет или крыло сильный встречный ветер. Иногда к крылу прикрепляют ленточки, чтобы видеть, что происходит, в частности – что делается с турбулентностью, когда меняешь разные параметры (форму крыла или угол набегающего потока). Когда модель крыла начинает сваливаться, ленточки поднимаются вверх, совсем как перья на задней кромке крыла белой цапли при сваливании.

УПРАВЛЯЕМОЕ СВАЛИВАНИЕ У ПТИЦ

Птицы не просто подвержены сваливанию: иногда они прибегают к нему нарочно, чтобы удобнее было садиться на землю. Когда крупная птица вроде серой или белой цапли заходит на посадку, у нее поднимаются перья на задней части крыльев – последствия турбулентности при сваливании.

Испытания в аэродинамической трубе – более легкий способ усовершенствовать проект, чем математические расчеты, которые в случае турбулентности становятся неподъемно сложными. И это, безусловно, более безопасный и дешевый способ, чем строить и испытывать несколько прототипов самолетов с разной формой крыла.

ОРНИТОПТЕР – ИЗОБРЕТЕНИЕ ЛЕОНАРДО

Он мог бы работать как дельтаплан, но махать крыльями при помощи мускульной силы человека было бы бессмысленно.

Разумеется, птичьи крылья усовершенствовались методом проб и ошибок в реальной жизни, причем ошибки в реальной жизни обходятся гораздо дороже, чем в аэродинамической трубе. Они могут привести к внезапной гибели или к сокращению продолжительности жизни и снижению шансов оставить потомство.

Леонардо да Винчи разработал летательные аппараты, немного похожие на современные дельтапланы. Кроме того, он проектировал и так называемые орнитоптеры – летательные аппараты с машущими крыльями, которые приводились в движение мускульной силой человека. Ни один из этих орнитоптеров в реальности не мог бы взлететь, хотя различные планеры, которые изобрел Леонардо, вполне дееспособны. Чтобы летать, махая крыльями, нужно больше энергии, чем могут дать человеческие мышцы. Только в конце XX века были получены ультралегкие материалы, способные компенсировать относительную слабость наших мышц. Когда наконец появились летательные аппараты, приводимые в действие человеком, оказалось, что эти машины не машут крыльями и вообще едва удерживаются в воздухе, что неудивительно.

Пожалуй, самый красивый из этих летательных аппаратов – Gossamer Albatross (“Шелковый альбатрос”), который создал гениальный изобретатель Пол Маккриди. Я имел честь побывать у него дома в Калифорнии.

Мистер Маккриди объяснил мне, почему его так увлекает обтекаемость. В частности, он много занимался автомобилями – его очень огорчало, что их проектируют так, чтобы они лишь выглядели обтекаемо на радость будущим покупателям, но на самом деле все иначе. Например, днище автомобиля не делают обтекаемым, возможно, отчасти потому, что его не видно и это не влияет на продажи. Обтекаемость играет важнейшую роль в жизни плавающих и летающих животных. Если вы когда-нибудь видели, как плавают пингвины и дельфины, вероятно, вы позавидовали их скорости. Люди-пловцы, даже выбритые до гладкости олимпийские чемпионы, по сравнению с ними еле шевелятся. Одно легкое движение хвоста – и дельфин мчится вперед, рассекая воду. Мало того что форма тела дельфина суперобтекаемая, у них еще и кожа постоянно обновляется – внешний слой отслаивается, словно перхоть, каждые два часа. Это снижает количество крошечных водоворотов, которые могли бы снижать скорость дельфина.

Вернемся к “Шелковому альбатросу”. Его приводит в движение опытный велосипедист, который крутит педали модифицированного велосипеда и тем самым вертит пропеллер. В 1979 году устройство успешно пересекло Ла-Манш, стартовав в Англии. Правда, затея едва не провалилась: пилот истощил все свои силы – хотя это был молодой спортсмен – и чуть не потерял сознание, завидев побережье Франции. Летательный аппарат двигался со скоростью от и до 28 км/ч всего в нескольких метрах над водой. Маккриди снабдил свое устройство стабилизирующим крылом, установив его перед главным. Кроме того, что соответствовало названию, крылья аппарата были очень узкие и длинные, с размахом почти 30 метров, а весил он всего 98 кг, причем больше половины приходилось на вес пилота. Маккриди избавил свой аппарат от лишнего веса до последнего грамма. Даже клей, которым он скрепил детали устройства, был сверхлегким. Летающие животные тоже стараются быть как можно легче. Кости у птиц, птерозавров и летучих мышей полые: очередной компромисс между легкостью и прочностью. Может статься, что птицы утратили унаследованные от предков зубы, поскольку те были тяжелее заменившего их рогового клюва. Чем быстрее летательный аппарат, тем важнее роль обтекаемости, потому что сопротивление воздуха растет как квадрат скорости. Неслучайно современные скоростные авиалайнеры, где бы их ни проектировали, выглядят одинаково. Это объясняется не только промышленным шпионажем. Инженеры всех стран имеют дело с общими законами физики. Раньше, когда самолеты летали медленнее, такого единства форм не наблюдалось.

“ШЕЛКОВЫЙ АЛЬБАТРОС”

“Шелковый альбатрос” на пути через Ла-Манш еле выдерживал вес пилота-велосипедиста. Полет всегда требует огромных расходов энергии. Это

1 ... 16 17 18 19 20 21 22 23 24 ... 42
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?