📚 Hub Books: Онлайн-чтение книгДомашняяВеликая теорема Ферма - Саймон Сингх

Великая теорема Ферма - Саймон Сингх

Шрифт:

-
+

Интервал:

-
+
1 ... 17 18 19 20 21 22 23 24 25 ... 84
Перейти на страницу:

В сокровищнице полученных Ферма результатов встречаются различные теоремы — от фундаментальных до чисто занимательных. Математики судят о важности теоремы по тому, какое влияние она оказывает на остальную математику. Во-первых, теорема считается важной, если она представляет собой некую универсальную истину, то есть если она верна для всей группы чисел. В случае теоремы Ферма о простых числах, теорема верна не только для некоторых простых чисел, а для всех простых чисел. Во-вторых, важная теорема должна раскрывать какую-нибудь более глубоко лежащую истину об отношениях между числами. Теорема может быть трамплином для создания целого сонма других теорем и даже стимулом для развития новых областей математики. Наконец, теорема считается важной, если существование целых областей исследования может оказаться под угрозой из-за отсутствия одного-единственного логического звена. Многие математики исходили бессильными слезами при мысли, что могли бы получить важный результат, если бы могли восстановить одно недостающее звено в цепочке логических рассуждений.

Поскольку математики используют теоремы как ступени, ведущие к другим результатам, было чрезвычайно важно доказать каждую из анонсированных Ферма теорем. Использовать Великую теорему только потому, что, по утверждению Ферма, он располагал ее доказательством, было невозможно. Прежде чем пустить Великую теорему в дело, ее необходимо было доказать со всей строгостью, иначе последствия могли быть самыми ужасными. Например, представьте себе математиков, которые приняли одну из теорем Ферма на веру. Эта теорема была бы включена ими как отдельный элемент в целую серию других, более обширных, доказательств. Со временем эти более обширные доказательства были бы включены в еще более обширные доказательства, и т. д. В результате появились бы сотни теорем, которые бы опирались на истинность той самой недоказанной, принятой на веру, теоремы. Но что если Ферма ошибся, и недоказанная теорема в действительности ложна? Все теоремы, в доказательствах которых была бы использована ложная теорема, также оказались бы ошибочными, и огромные разделы математики рухнули бы. Теоремы — фундамент математики: если истинность теорем установлена, то, опираясь на них, можно возводить, пребывая при этом в полной безопасности, новые теоремы. Необоснованные (недоказанные) идеи имеют бесконечно меньшую ценность и называются гипотезами. Любая логика, опирающаяся на гипотезу, сама гипотетична.

Ферма утверждал, что располагает доказательством любого из своих примечаний, поэтому для него все они были теоремами. Но до тех пор, пока математическое сообщество в целом не восстановит каждое доказательство, все утверждения, содержащиеся в примечаниях, рассматриваются лишь как гипотезы. На протяжении последних 350 лет Великую теорему Ферма правильнее было бы называть Великой гипотезой Ферма.

За прошедшие столетия одно за другим были доказаны все утверждения Ферма, содержавшиеся в примечаниях на полях «Арифметики» Диофанта, и только Великая теорема Ферма упорно не поддавалась усилиям математиков. Ее даже стали называть «последней теоремой Ферма», так как она осталась последним его примечанием, которое требовалось доказать. Триста лет все попытки найти ее доказательство одна за другой терпели поражение. Великая теорема ферма обрела известность как самая трудная «головоломка» математики. Но всеми признанная трудность проблемы не обязательно означает, что Великая теорема Ферма важна в том смысле, в каком это понимается выше. Великая теорема Ферма, по крайней мере вплоть до самого последнего времени, не удовлетворяла нескольким критериям: казалось, что если бы ее удалось доказать, то это не привело бы ни к какому сколько-нибудь заметному прогрессу в развитии теории чисел и не способствовало бы доказательству других гипотез.

Слава Великой теоремы Ферма обусловлена исключительно тем, что доказать ее необычайно трудно. Есть и еще один дополнительный стимул: «князь любителей» заявил, что располагает доказательством этой теоремы, над восстановлением которой с тех пор ломали голову поколения профессиональных математиков. Небрежные замечания Ферма на полях принадлежавшего ему экземпляра «Арифметики» Диофанта читались как вызов всему миру. Ферма доказал свою Великую теорему, удастся ли какому-нибудь математику превзойти или сравняться с ним по блеску ума?

Г.Г. Харди обладал весьма своеобразным чувством юмора. Как-то раз он задумался, что в математическом наследии прошлого могло бы сравниться с Великой теоремой Ферма по тщетности всех попыток найти доказательство. К найденному им аналогу Великой теоремы Ферма Харди обращался всякий раз, когда ему приходилось преодолевать страх перед морскими путешествиями. Для него это было своего рода страхованием от несчастного случая. Если Харди предстояло пересечь Атлантический океан на борту лайнера, он предварительно посылал кому-нибудь из коллег телеграмму следующего содержания:

ДОКАЗАЛ ГИПОТЕЗУ РИМАНА ТЧК ПОДРОБНОСТИ ПО ВОЗВРАЩЕНИИ ТЧК

Гипотеза Римана — проблема, которой математика «больна» с XIX века. Логика Харди состояла в том, что Бог не даст ему утонуть потому, что тогда математики устремились бы в погоню за еще одним неуловимым призраком.

Великая теорема Ферма — задача невероятно трудная, и тем не менее ее можно сформулировать так, что она станет понятной даже школьнику. Ни в физике, ни в химии, ни в биологии нет ни одной проблемы, которая формулировалась бы так просто и определенно и оставалась нерешенной так долго. В своей книге «Великая проблема» Э.Т. Белл высказал предположение, что возможно, наша цивилизация подойдет к концу прежде, чем удастся доказать Великую теорему Ферма. Доказательство Великой теоремы Ферма стало самым ценным призом в теории чисел, и поэтому не удивительно, что поиски его привели к некоторым наиболее захватывающим эпизодам в истории математики. В эти поиски оказались вовлеченными величайшие умы на нашей планеты, за доказательство назначались огромные премии. Из-за Великой теоремы Ферма люди дрались на дуэли, а некоторые, отчаявшись найти доказательство, даже кончали с собой.

Статус Великой головоломки вышел за рамки замкнутого мира математики. В 1958 году Великая теорема Ферма проникла даже в легенду о Фаусте. В сборнике «Как иметь дело с дьяволом» была опубликована новелла Артура Порджеса «Дьявол и Саймон Флэгг». В ней дьявол обращается к профессору математики Саймону Флэггу с предложением задать ему, дьяволу, какой-нибудь вопрос. Если дьяволу удастся найти ответ за двадцать четыре часа, то он получает душу Саймона. В случае неудачи дьявол обязуется уплатить Саймону 100000 долларов. Саймон задает дьяволу вопрос: «Верна ли Великая теорема Ферма?» Дьявол исчезает и носится по свету, собирая по крохам все достижения математики. На следующий день он возвращается и признает свое поражение: «Вы выиграли, Саймон, — сказал дьявол, почтительно глядя на профессора. — Даже мне не под силу выучить всю математику, которая необходима для решения столь трудной задачи за столь короткое время. Чем глубже я погружаюсь в проблему, тем труднее она становится. Неединственное разложение на множители, идеальные числа… Да что зря говорить! Знаете, — признался дьявол, — даже самые лучшие математики на других планетах, а они, должен вам сказать, намного опередили ваших, не решили ее. Взять хотя бы того парня на Сатурне, что очень похож на гриб на ходулях. Он в уме решает дифференциальные уравнения в частных производных. Так даже он не справился с этой задачей».

1 ... 17 18 19 20 21 22 23 24 25 ... 84
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?