Дарвинизм в XXI веке - Борис Жуков
Шрифт:
Интервал:
За время своего господства СТЭ обросла огромным числом неожиданных и нетривиальных фактов, представляющих собой как бы моментальный снимок постулированных ею процессов. В школьные учебники попала всем известная большая синица, которая распространялась на восток Азии, обходя великие азиатские горные системы двумя путями — с севера (через Сибирь) и с юга (через Индию и Индокитай).
В Сибири с ней ничего особенного не случилось, а вот в южной Азии сформировался вполне отчетливый подвид, от которого на востоке континента отпочковался еще один. Восточный подвид легко скрещивается с южным, а тот, в свою очередь, — с исходным евроазиатским. Но в бассейне Амура, где евроазиатские синицы обитают бок о бок с восточными, они уже не узнают друг друга и ведут себя как «хорошие» виды. Такое явление (получившее название «кольцевой вид») известно для целого ряда птиц, причем подвидов-«ступенек» там может быть гораздо больше, чем у синицы — порой более десятка.
Иногда процесс видообразования — или, по крайней мере, его ключевые этапы — удается наблюдать непосредственно. В Евразии, Северной Америке и Северной Африке широко распространен серый сорокопут Lanius excubitor. Птицы, обитающие на Пиренейском полуострове, в Африке и в азиатских пустынях, отличаются от своих северных собратьев некоторыми деталями окраски, телосложения, а также гнездовыми привычками и другими признаками. В ряде мест сорокопуты «северного» и «южного» типов встречаются совместно, и натуралисты XIX века нередко фиксировали образование смешанных пар, успешно выводивших потомство. Поэтому «южный» сорокопут считался не более чем подвидом серого — Lanius excubitor meridionalis. Но на протяжении ХХ века случаи образования смешанных пар наблюдались все реже и к концу его вовсе сошли на нет. Видимо, процесс видообразования, начавшийся, вероятно, некоторое время назад, завершился прямо на наших глазах, и сейчас пустынный сорокопут числится полноправным отдельным видом — Lanius meridionalis.
Подобные феномены (например, существование на одном вулканическом острове 23 видов наземных улиток — точно по числу долин между непреодолимыми для моллюсков сухими и холодными хребтами) трудно объяснить иначе как с точки зрения СТЭ. Никакая другая теория сегодня не способна столь же четко и убедительно объяснить такой широкий круг фактов. Так что господствующее положение СТЭ в современных эволюционных представлениях не только понятно, но и вполне оправданно.
Означает ли сказанное, что СТЭ полностью и исчерпывающе объясняет все эволюционные явления и фактов, противоречащих ей (или не вписывающихся в нее, не поддающихся интерпретации в ее понятиях), нет? Судите сами.
Для начала зададим простой вопрос: какие организмы эволюционируют быстрее — крупные или мелкие? Если все дело только в динамике генных частот, то скорость эволюции должна зависеть от исходного разнообразия материала (в конечном счете — от частоты мутаций), жесткости отбора, численности вида и скорости смены поколений. Кроме того, согласно СТЭ, на нее может влиять то, насколько легко у данной группы существ возникают преграды, препятствующие обмену генами между популяциями.
Частота мутаций у разных групп живых организмов может заметно различаться, но не обнаруживает явной зависимости от размера (по крайней мере, в расчете на одно поколение). Жесткость отбора может отличаться очень сильно — на порядки, но если она и зависит от размеров организма, то только в том смысле, что в популяциях мелких существ она может достигать значений, которые в популяциях крупных просто невозможны: скажем, в популяции амурских тигров, насчитывающей всего 400–500 особей, не может выживать одна особь из тысячи родившихся. Так что по этому показателю если у кого-то и есть преимущество, то скорее у мелких организмов. По всем же остальным параметрам преимущества последних и вовсе очевидны: они более многочисленны, легче распадаются на изолированные популяции, и у них быстрее сменяются поколения. По всему выходит, что в среднем они должны изменяться быстрее.
В действительности, однако, все обстоит почти строго наоборот — по крайней мере, у животных и одноклеточных эукариот. Видовой состав слонов и крупных копытных обновляется наполовину примерно за 200 тысяч лет. Для мелких млекопитающих этот период составляет 500 тысяч, для насекомых — 3–7 млн, для одноклеточных диатомовых водорослей — 15 млн лет. Можно спорить, насколько адекватен такой показатель для оценки скорости эволюции и означает ли слово «вид» одно и то же для слонов и диатомей (особенно применительно к ископаемому материалу), но общая закономерность слишком очевидна. И ее нужно как-то объяснять.
Другой пример: согласно теории, дискретность видов — их отграниченность друг от друга и целостность каждого внутри себя — поддерживается постоянным обменом генами внутри вида и невозможностью такого обмена между видами. Строго говоря, с этой точки зрения само понятие вида приложимо только к существам с регулярным половым процессом в той или иной форме. Во всяком случае, у форм, размножающихся исключительно бесполым путем, видовая норма должна быть гораздо менее жесткой, а границы между видами — условными.
Между тем некоторые животные (в том числе и довольно высокоорганизованные) способны существовать как с половым размножением, так и без него. Всем известный серебряный карась образует устойчивые популяции из одних самок, размножающихся партеногенезом (процесс, при котором развитие зародыша протекает точно так же, как и при обычном половом размножении, но без оплодотворения и без участия генов самца). Однако их видовая принадлежность определяется так же легко, как и у представителей того же или близкого вида, живущих в нормальной обоеполой популяции. И никакой особенной тенденции к размытию видовых признаков у таких существ не просматривается. Бесполые и партеногенетические виды остаются дискретными у одноклеточных, жуков-долгоносиков, низших водорослей, папоротников и коловраток (причем для последних это показал не кто иной, как Эрнст Майр — один из главных идеологов СТЭ).
Вид — вообще центральное понятие в синтетистской парадигме, рассматривающей всякую эволюцию как процесс реального или потенциального видообразования. Согласно СТЭ, каждый акт видообразования уникален и в принципе неповторим. Никакой вид не может возникнуть независимо второй раз — даже от той же исходной формы и под действием тех же факторов отбора. Это так же невероятно, как то, что два брата, родившиеся в разные сроки, будут генетически идентичны, как близнецы.
Однако еще в начале 60-х годов советский энтомолог Георгий Шапошников экспериментально изучал процессы видообразования у тлей. Тля — исключительно высокоспециализированный паразит, многие виды тлей способны питаться лишь строго ограниченным набором растений, часто — всего одним видом. Если лишить тлей доступа к «своему» кормовому растению, они умрут — даже сидя на сочном побеге, который с аппетитом сосут их ближайшие родичи.
С помощью некоторых ухищрений и ценой высокой смертности среди подопытных Шапошникову все же удалось заставить тлей, питавшихся на купыре, потреблять другое зонтичное растение — бутень. При этом уже через несколько десятков поколений тли-переселенцы приобретали морфологическое сходство с другим видом тлей, исходно обитавшим на бутене. И самое неожиданное — они утрачивали способность скрещиваться с исходным «купырным» видом, зато могли вступать в брак с «бутеневыми» тлями. Если остальные результаты Шапошникова противоречили скорее духу СТЭ, то преодоление межвидового репродуктивного барьера нарушало уже и букву теории: получалось, что ученый в своих экспериментах независимо воссоздал уже существующий конкретный вид. Это попахивало направленностью эволюции и чуть ли не лысенковскими фантазиями о порождении ржи пшеницей и кукушки — пеночкой.
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!