Аналитическая культура. От сбора данных до бизнес-результатов - Карл Андерсон
Шрифт:
Интервал:
СПЕЦИАЛИСТЫ ПО ВИЗУАЛИЗАЦИИ ДАННЫХ
Это люди с развитым чувством прекрасного, которые создают инфографику, дашборды и другие графические элементы. Кроме того, они могут заниматься написанием программного кода при помощи JavaScript, CoffeeScript, CSS и HTML и работают с библиотеками визуализации данных, такими как D3 (эффективная и красивая библиотека визуализации, описанная в книге Скотта Мюррея Interactive Data Visualization for the Web) и HTML5.
Джим (Джим В., см. рис. 4.1) получил степень магистра в области теории и практики вычислительных систем со специализацией в сфере биоинформатики и машинного обучения. Он работал в компании Garmin, где создавал графические пользовательские интерфейсы для навигационных устройств. После этого в биологическом научно-исследовательском институте он проводил анализ масштабной последовательности данных. Именно тогда он познакомился с библиотекой визуализации данных D3 и начал вести блог, посвященный этой теме, где публикует доступные и понятные руководства для пользователей. Сегодня Джим занимает пост специалиста по визуализации данных и специалиста по теории и методам анализа данных в лаборатории данных корпорации Nordstrom в Сиэтле. В своей работе он использует такие инструменты, как Ruby, Python и среду R (в частности пакеты ggplot2 и dplyr). Он обеспечивает поддержку систем персонализации и рекомендаций, а также осуществляет визуализацию данных. Основными его «клиентами» становятся сотрудники из других подразделений компании. В крупных компаниях иногда могут быть дополнительные специалисты, которые занимаются исключительно подготовкой отчетов или применением определенного инструмента бизнес-аналитики. Другие специалисты могут работать только с инструментами обработки и анализа больших данных, например Hadoop или Spark.
Рис. 4.1. Профиль команды лаборатории данных компании Nordstrom (по состоянию на 2013 год). МО = машинное обучение. DevOps — относительно новый термин, обозначающий интеграцию разработки и эксплуатации программного обеспечения
Как вы сами видите, названия специалистов, работающих с данными, как и их функции, во многом пересекаются. В основном они обрабатывают данные с помощью разных языков программирования типа SQL.
В одних случаях требуются более серьезные навыки программирования, а в других можно обойтись и без них. Нередко требуется построение статистических моделей с применением SAS или R. В большинстве случаев работа аналитика объединяет подготовку отчетов и собственно проведение анализа.
Аналитика требует слаженной командной работы. В компании с управлением на основе данных, в которой четко налажены рабочие процессы, присутствуют как аналитики разных типов, так и сотрудники с дополняющими их навыками. При найме новых сотрудников принимается во внимание «портфолио» совокупных навыков всей команды, чтобы найти таких потенциальных кандидатов, которые «закроют» и усилят проблемные области.
Например, на рис. 4.1 приведен профиль команды лаборатории по работе с данными компании Nordstrom в 2013 году. Легко можно определить сильнейших математиков и статистиков в команде (Элисса, Марк и Эрин), сильнейших разработчиков (Дэвид и Джейсон В.), а также специалиста по визуализации данных (Джим В., о котором шла речь ранее). Я поинтересовался у директора лаборатории Джейсона Гоуэнса, что он думает насчет расширения команды, на что он ответил: «Во-первых, мы придерживаемся «правила двух пицц» Джеффа Безоса[54], а потому количество членов нашей команды вряд ли сильно изменится. Мы уверены, что такой подход помогает нам сконцентрироваться на том, что нам кажется серьезными возможностями. Во-вторых, каждый член команды привносит в нее что-то уникальное, что помогает расти всем остальным».
Еще в момент формирования команды они поступили весьма мудро, наняв сильного специалиста по визуализации данных, хотя многие другие команды делают этот шаг гораздо позже. Наличие красиво оформленных и подтвержденных концепций, основанных на данных, помогло команде лаборатории утвердить свой авторитет в рамках всей компании. «Джим очень помог нам вызвать интерес к нашей работе у остальных сотрудников, с помощью своих навыков визуализации данных он буквально вдохнул жизнь в то, что мы делаем», — говорит Джейсон.
Как уже отмечалось, профессиональные знания и навыки специалистов по теории и методам анализа данных, которые часто приходят в коммерческий сектор из академической среды, условно можно изобразить в виде буквы «Т». А если у эксперта две основные области специализации — то в виде числа пи (π). Найм новых сотрудников и формирование команд можно назвать «аналитическим тетрисом».
В 2012 году Харрис и др.[55] провели опрос среди нескольких сотен специалистов по работе с данными и разделили их на пять групп по ключевому навыку, как они сами себя охарактеризовали:
• бизнес;
• математика / анализ операций;
• машинное обучение / большие данные;
• программирование;
• статистика.
Они выделили четыре кластера ролей.
Предприниматели
Специалисты по работе с данными, у которых лучше всего развиты навыки, связанные с ведением бизнеса (форма буквы «Т»), и в меньшей степени развиты остальные навыки.
Исследователи
Специалисты, у которых лучше всего развиты навыки по работе со статистикой и в меньшей степени — навыки в области машинного обучения / больших данных, бизнеса и программирования.
Разработчики
Эксперты с двумя областями специализации (форма числа Пи) — с сильными навыками в сфере программирования и машинного обучения / больших данных и умеренными навыками по трем оставшимся категориям.
Творческие специалисты
Специалисты, «которые в среднем не считаются ни самыми сильными, ни самыми слабыми ни в одной из групп по ключевому навыку».
Профили этих четырех ролей представлены на рис. 4.2. Легко отметить широкое разнообразие среди этих четырех типов.
Рис. 4.2. Профиль навыков четырех кластеров респондентов
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!