Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос
Шрифт:
Интервал:
Измерение радиуса Земли по методу аль-Бируни
Соотношение сторон треугольника стало настоящим открытием для архитекторов, астрономов, артиллеристов, ученых и мореплавателей. К тому же это послужило толчком к формированию абстрактной математики, позволяющей по-новому взглянуть на классические геометрические концепции, такие как теорема Пифагора, которая гласит, что:
a2+b2= c2,
где c — гипотенуза, a и b — два катета.
Если α — это угол между сторонами b и c, тогда:
Другими словами, a = c sin α, а b = c cos α. Мы можем подставить эти значения в уравнение Пифагора:
(c sin α)2 + (c cos α)2 = c2,
которое можно преобразовать так:
c2 (sin α)2 + c2 (cos α)2 = c2
и привести к следующему виду:
(sin α)2 + (cos α)2 = 1
Прекрасно! Теперь у нас есть компактная формула, демонстрирующая, как можно вычислить синус по косинусу и наоборот без необходимости рисовать треугольник. Это простейшее из уравнений, которые называют тригонометрическими тождествами — уравнениями, включающими в себя тригонометрические функции. Принято считать, что арабский математик ибн-Юнус (современник аль-Бируни) вывел следующую формулу:
Она имела огромное значение, хотя математикам понадобилось пять сотен лет, чтобы понять почему. Уравнение ибн-Юнуса позволяет заменить такую трудную математическую операцию, как умножение, на более простое действие — сложение.
Представьте, что нам нужно умножить 0,2897 на 0,3165.
Оба числа находятся в диапазоне от 0 до 1, стало быть, есть такие углы, для которых эти числа являются косинусами. Определить, какие именно углы соответствуют данным значениям, помогут тригонометрические таблицы. Вот эти углы:
cos 73,160° = 0,2897
cos 71,548° = 0,3165
Следовательно, мы можем записать уравнение так:
0,2897 × 0,3165 = cos 73,160° × cos 71,548°
Приведенное выше тождество говорит о том, что эта формула эквивалентна следующему уравнению:
Обратившись к таблицам, получим тождество:
Это и есть результат умножения чисел 0,2897 и 0,3165, причем очень точный. Умножьте их с помощью калькулятора, округлите произведение до четвертого десятичного знака, и получите 0,0917.
Приведенный выше способ умножения чисел может показаться слишком сложным, но в конце XVI столетия он был самым легким. Вместо того чтобы расписывать операцию умножения в столбик, что требует больших усилий и времени, достаточно просто посмотреть в сборник тригонометрических таблиц, сложить два числа, найти их разность, снова посмотреть в таблицы, сложить два числа и разделить их на два. Этот метод обозначается термином простаферезис (prosthaphaeresis), который образован от греческих слов, означающих сложение и вычитание, — prosthesis и aphaeresis.
Метод простаферезиса вдохновил шотландца Джона Непера на поиск еще более эффективного способа преобразования умножения в сложение, что в 1614 году привело к открытию логарифма. Вместо умножения двух чисел теперь можно было сложить их логарифмы. Логарифмы Непера существенно упростили процесс умножения, из-за чего метод простаферезиса утратил популярность. Тем не менее на протяжении нескольких десятилетий триумфа прямоугольный треугольник — квинтэссенция геометрии — играл двойную роль в качестве невидимого оружия арифметики.
Хотя треугольники, несомненно, весьма полезны по отдельности, в командной игре они особенно эффективны. Если нарисовать сеть треугольников (как показано на рисунке ниже) и измерить в ней все углы, то достаточно определить точную длину одной линии, чтобы рассчитать длину всех остальных линий сети. Предположим, нам известна точная длина линии, выделенной жирным; обозначим ее как l. Тригонометрическое тождество, которое принято называть теоремой синусов, дает нам формулу расчета длины двух других сторон треугольника:
где α — угол, противоположный жирной линии, β и γ — два других угла треугольника. Поскольку все углы в треугольниках сети известны, на основании длины каждой очередной линии можно вычислить длину двух других линий — и так далее, пока не будет известна длина каждой линии сети. Этот метод применим к любым треугольникам, а не только к прямоугольным.
В 1533 году голландский математик Гемма Фризиус понял, что метод триангуляции как нельзя лучше подходит для картографии, поскольку измерять углы гораздо легче, чем большие расстояния[69]. Его идея состояла в том, чтобы выбрать точки на местности так, чтобы от каждой из них было видно две других, и построить таким образом сеть треугольников. Он измерил углы между точками с помощью теодолита — круглого транспортира на подставке. Определив длину базисной линии, Гемма Фризиус смог рассчитать все остальные расстояния, используя тригонометрические таблицы, а затем нарисовал точную карту местности.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!