📚 Hub Books: Онлайн-чтение книгДомашняяВселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг

Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг

Шрифт:

-
+

Интервал:

-
+
1 ... 23 24 25 26 27 28 29 30 31 ... 79
Перейти на страницу:

Самые массивные частицы живут всего миллионную долю секунды или даже меньше, а потом распадаются на более легкие, и так будет продолжаться предположительно 13,7 миллиарда лет – с начала времен и до тех пор, когда все массивные частицы раз и навсегда распадутся. Должно быть, вы предполагаете, что тогда все уляжется и останутся только наши старые знакомые протоны и нейтроны, но вы же уже поняли, что бывает, когда вы что-то предполагаете, правда?

По Вселенной так и шныряют высокоэнергичные заряженные частицы. Протоны на высоких скоростях испускает и Солнце, и другие звезды в разных частях галактики, и сверхновые, – все места, где есть высокоэнергичные источники. Эти заряженные частицы, которые называются космическими лучами, летают туда-сюда, пока на что-нибудь не наткнутся. Если бы не магнитное поле, окружающее нашу планету, этим «чем-нибудь» могли бы быть ваши клетки – и тогда космические лучи убили бы вас или стерилизовали. Вот почему нужно слушаться мамочку и не проводить в открытом космосе слишком много времени. Достаточно часто космические лучи попадают в атмосферу и сталкиваются с кислородом или азотом, превращаясь в процессе в более массивные частицы. Стратосфера и все, что выше, кишат, словно нечищеные зубы, всякой дрянью – мюонами, каонами и пионами.

Эти частицы рождаются и умирают в мгновение ока[65], поэтому создать их и измерить можно только и исключительно внутри ускорителя. Если мы столкнем частицы друг с другом при достаточно высокой энергии, а затем сошлемся на закон Е = mc2 … вуаля! Массивные частицы у нас в кармане. Если мы будем получать их в ускорителях, то нам будет проще предсказывать, когда они появляются, а значит, легче и изучать их.

Однако пионы и мюоны – не единственные массивные частицы, которые страдают от дегенеративных тенденций. Как мы уже упоминали, распаду подвержен даже нейтрон (эта черта отличает его от протона)[66]. Если вы дадите нейтрону около 10 минут, он распадется на протон, электрон (а значит, сохранится общий заряд) и еще одну частицу, о которой мы вам раньше не говорили, – она называется антинейтрино.

Только не пугайтесь – мы сейчас вам все объясним, и про «анти», и про «нейтрино». Начнем с «нейтрино». Это название выбрано потому, что нейтрино электрически нейтральны, а прямо их не увидеть. Откуда же мы узнали, что они есть, если они, в сущности, невидимы? Хороший вопрос.

В 1930 году Вольфганг Паули предложил новаторскую интерпретацию экспериментов с распадом нейтрона. Было замечено, что когда нейтрон распадается, протон и электрон часто отлетают в одном и том же направлении. Интерпретацию распада нейтрона по Паули, как и многие явления в жизни, легче представить себе, если привлечь к делу супергероев.

Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности

Представьте себе, как Сью Шторм, она же Невидимая Леди, и ее муж мистер Фантастик[67] катаются на коньках по замерзшему пруду. Они отталкиваются друг от друга, и мистер Фантастик стремительно отъезжает в одну сторону, а Сью, как всегда невидимая, – в другую. С берега за ними наблюдает Существо, которое видит только мистера Фантастика, который мчится задом наперед, – с его точки зрения, безо всякой причины. Но Существо довольно быстро понимает, что к чему. Он уверен, что на льду есть еще кто-то – кто-то невидимый – и что этот второй сейчас мчится в противоположном направлении.

Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности

Паули, сыгравший роль Существа, заключил, что должна существовать невидимая частица-призрак, электрически нейтральная: антинейтрино.

Нейтрино (а следовательно, и антинейтрино) очень легкие, и довольно долго считалось, что они полностью лишены массы. Однако в 1998 году на японском нейтринном детекторе «Супер-Камиоканде» был проведен эксперимент, показавший, что у нейтрино на самом деле есть некоторая масса. Это выдающееся достижение, но следует также отметить, что пока что ученые еще не вычислили массу нейтрино. К этому вопросу мы еще вернемся в главе 9, а пока вправе уверенно сказать, что масса нейтрино во много раз меньше массы электрона.

Что же касается «анти», постарайтесь не пугаться этого слова. «Анти» означает всего-навсего «наоборот» – античастица имеет квантовые числа, прямо противоположные частице-партнеру. Антиматерия – вещество со скверной репутацией: всем известно, что если комок антиматерии соприкоснется с обычной материей, они взорвутся и превратят всю свою массу в энергию. Сами по себе античастицы безобидны. Если бы мы вдруг взяли сразу все частицы во Вселенной и заменили их античастицами (в том числе и те, из которых состоите вы), вы бы не заметили разницы.

III. Зачем разным частицам так много разных правил?

Сейчас, когда мы установили несколько основных законов, общих для всех фундаментальных сил, настала пора поговорить об играх, начиная с самых простых и очевидных.

Гравитация

Просим заметить, что люди, само собой, знали о существовании гравитации задолго до того, как сэр Исаак Ньютон «открыл» ее в 1687 году. Например, к тому времени уже давным-давно умели строить катапульты. И прекрасно понимали, что если пустить стрелу вверх, то она впоследствии пробьет доспехи – хорошо бы на другой стороне поля. Без гравитации обслуживающему персоналу гильотины пришлось бы сидеть и дожидаться, когда же ее лезвие случайным образом упадет вниз.

Но Ньютон при помощи простого набора уравнений сумел с большой точностью предсказать падение яблока, орбиту Луны, пути планет. Закон, который он открыл, был прост – и описывал колоссальное множество явлений. Этот закон показывал, что все предметы во Вселенной притягивают друг друга, и чем дальше они друг от друга находятся, тем слабее это притяжение, или гравитация.

Ньютон, однако, разобрался в этой истории не до конца. Лишь в 1916 году Альберт Эйнштейн, разработав общую теорию относительности, объяснил нам, в чем сущность силы тяжести. Однако нам станет интересно, где ошибся Ньютон, только когда мы начнем говорить о машине времени (глава 5), Вселенной в целом (глава 6) и теории Большого взрыва (глава 7). Пока что будем считать, что он был полностью прав.

1 ... 23 24 25 26 27 28 29 30 31 ... 79
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?