Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри
Шрифт:
Интервал:
Разумеется, вся прелесть работы с мышами, особенно с популяциями, выведенными от прямых родственников, заключается в относительной простоте выполнения разнообразных генетических и эпигенетических исследований, тем более, когда мы имеем довольно четкое представление о том, что и где искать. В нашем случае главным объектом изучения был ген агути.
Работающие с мышами генетики знают, каким образом создается желтый фенотип у желтых мышей Avy. Участок ДНК вводится в хромосому мыши непосредственно перед геном агути. Этот участок ДНК, который называется ретротранспозон, представляет собой одну из тех последовательностей ДНК, которые не несут информацию о белке. Вместо этого, в нем содержится информация об аномальном участке РНК. Экспрессия этой РНК нарушает обычное регулирование расположенного за ней гена агути и постоянно сохраняет этот ген во активированном состоянии. Вот почему шерсть у мышей Avy желтая, а не полосатая.
Но это не дает нам ответа на вопрос, почему генетически идентичные мыши Avy/а демонстрировали столь значительную разницу в окрасе шерсти. И этот ответ следует искать в эпигенетике. У некоторых мышей Avy/a последовательность CpG в ретротранспозоне ДНК оказывалась очень сильно метилированной. Как мы узнали из предыдущей главы, метилирование ДНК такого рода подавляет экспрессию генов. Ретротранспозон переставал экспрессировать аномальную РНК, нарушавшую транскрипцию гена агути. И такие мыши рождались с вполне характерным для них полосатым окрасом шерсти. У других генетически идентичных им мышей Аvу/а ретротранспозон был неметилированным. Он производил свою дефектную РНК, препятствовавшую транскрипции гена агути таким образом, что тот постоянно оставался активированным, и мыши рождались желтыми. Мыши с промежуточными уровнями метилирования ретротранспозона имели промежуточные уровни желтого цвета в шерсти. Этот механизм продемонстрирован на рисунке 5.4.
Рис. 5.4. Вариации в метилировании ДНК (показано черными кружками) влияют на экспрессию ретротранспозона. Вариации в экспрессии ретротранспозона. в свою очередь, воздействуют на экспрессию гена агути, что приводит к разнообразию окраса шерсти у генетически идентичных животных
В данном случае метилирование ДНК действует по принципу переключателя дальнего и ближнего света фар. Когда ретротранспозон неметилирован, он светит в полную мощь, производя аномальную РНК в больших количествах. Чем более метилированным становится ретротранспозон, тем больше «глушится» его экспрессия.
Мыши агути представляют собой довольно яркий пример того, как эпигенетическая модификация, в данном случае метилирование ДНК, может заставить генетически идентичных индивидуумов выглядеть фенотипически различными. Однако всегда остается опасение, что агути, возможно, это особый случай, и, может быть, такой механизм не очень типичен. Особенную озабоченность этот вопрос вызывает по той причине, что ген агути обнаружить у человека чрезвычайно сложно — похоже, что он принадлежит к тому самому 1 проценту генов, который не является общим для нас и наших «соседей» — мышей.
У мышей существует еще одна интересная особенность, а именно степень извитости хвоста. Этот признак, который называется Axin-переключением, также демонстрирует значительную вариабельность у генетически идентичных индивидуумов. Экспериментально подтверждено, что он, подобно окрасу мышей агути, является еще одним примером того, что подобная вариативность зависит от различных уровней метилирования ДНК в ретротранспозоне разных животных.
Это обнадеживает, так как доказывает, что рассматриваемый нами механизм не уникален, но закрученные хвосты, к сожалению, не представляют фенотип, имеющий непосредственное отношение к среднему человеку. Впрочем, все-таки есть такой показатель, которым мы можем оперировать: масса тела. Масса каждой генетически идентичной мыши далеко не всегда одинакова.
Насколько бы тщательно ни контролировали ученые условия содержания мышей и особенно количества получаемой ими пищи, идентичные мыши из инбредных линий все равно различались по массе. Эксперименты, проводившиеся на протяжении многих лет, показали, что только 20-30 вариаций в массе тела могут быть объяснены различиями среды, в которой содержались животные после рождения. Соответственно, возникает вопрос — чем провоцируются различия в массе тела у остальных 70-80 процентов[35]? Если к этому не имеет отношения ни генетика (все мыши идентичны), ни окружающая среда, значит, присутствует еще какой-то неизвестный фактор.
В 2010 году профессор Эмма Уайтло, подлинная энтузиастка в области генетики мышей, авторитетный и беззаветно преданный своему делу ученый из Института медицинских исследований Квинсленда, опубликовала поразительную статью. Взяв инбредную линию мышей, она с помощью генной инженерии вывела субпопуляции животных, которые во всем были генетически идентичны исходной популяции с единственным исключением — они экспрессировали только половину нормальных уровней определенного эпигенетического белка. Эмма Уайтло провела независимые исследования и с помощью методов генной инженерии она создала отдельные группы животных с мутациями разных генов, несущих информацию об эпигенетических белках.
Когда профессор Уайтло проанализировала массу тела большого количества обычных и мутировавших мышей, она получила очень любопытные результаты. В группе, состоявшей из обычных инбредных мышей, большинство животных имели относительно одинаковую массу, незначительные различия в котором соответствовали данным множества других экспериментов. У мышей с низким уровнем определенного эпигенетического белка вариабельность массы тела в пределах группы оказывалась существенно выше. В ходе дальнейших опытов, о которых рассказывалось в той же статье, была дана оценка роли понижения экспрессии этих эпигенетических белков. Как выяснилось, понижение уровня экспрессии было связано с изменениями в уровнях экспрессии генов, участвующих в метаболизме[36], и повышало вариабельность их экспрессии. Другими словами, эпигенетические белки осуществляли некий контроль над экспрессией других генов, что и можно было ожидать.
Эмма Уайтло протестировала в ходе экспериментов достаточно большое количество эпигенетических белков и обнаружила, что лишь некоторые из них вызывают увеличение вариабельности в массе тела. Одним из белков, приводящих к такому результату, оказался Dnmt3a. Это один из ферментов, переносящих метиловые группы к ДНК для репрессии генов. Другой эпигенетический белок, вызывавший увеличение вариативности массы тела, называется Trim28. Он образует комплекс с некоторым количеством других эпигенетических белков, и вместе они добавляют специфические модификации к гистонам. Эти модификации снижают уровень регуляции экспрессии генов около модифицированных гистонов, и потому их называют репрессивными гистоновыми модификациями или метками. Участки генома, имеющие большое количество репрессивных меток на своих гистонах, в большей степени подвержены метилированию ДНК, а это значит, что Trim28 может быть важен для создания подходящих условий для метилирования ДНК.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!