Критическая масса. Как одни явления порождают другие - Филип Болл
Шрифт:
Интервал:
Позднее, когда Максвелл занялся описанием газовых систем, в которых молекулы постоянно двигаются и сталкиваются в таком количестве, что любые точные расчеты становятся невозможными, он четко осознал аналогию этой задачи с проблемой Бокля, описывающего общество, в котором поведение каждой отдельной личности непредсказуемо и непостижимо:
Даже ничтожные количества вещества, используемые в наших экспериментах, содержат миллионы молекул, положение ни одной из них мы не можем воспринимать и измерять отдельно. Поэтому истинное движение отдельных молекул просто не может быть описано в соответствии со строгим, исторически сложившимся (ньютоновским) методом, и мы вынуждены прибегать к статистическим методам, описывающим сразу большие группы ціолекул... Изучая зависимости такого рода, мы обнаруживаем закономерности нового типа, л именно закономерности усредненного движения, которые могут бьггь весьма эффективно использованы для всех практических целей исследования34.
В 1873 году Максвелл подчеркнул, что именно опыт социальных статистиков убедил его в корректности методов статистики, позволяющих, образно говоря, извлекать порядок из микроскопического хаоса:
Объяснения единообразия, которое мы наблюдаем в экспериментах с пробами веществ, содержащими миллионы молекул, точно соответствуют тем, которые приводили Лаплас и Бокль, объединяя в единое целое данные об огромном количестве событий, никак не связанных друг с другом115.
Остается неясным, осмелился бы Максвелл отказаться от «строгого исторического метода» ньютоновской механики для отдельных частиц, если бы в науке уже не был накоплен большой опыт применения социальной статистики, непосредственно изучавшей поведение очень сложных систем из огромного числа элементов, поведение каждого из которых не поддается строгому расчету. Из чего Максвелл мог бы черпать уверенность в самой возможности нахождения законов при столь удручающей неполноте знаний относительно движения частиц?
Максвелл начал работу над кинетической теорией газов вскоре после прочтения книги Бокля, однако до этого он как раз пытался применять более аналитически строгие методы Кетле, о работах которого, в частности, о богатых возможностях использования нормального распределения, Максвелл мог узнать из заинтересовавшего его обзора Джона Гершеля 1850 года, посвященного деятельности Кетле. Кстати, в этом обзоре Гершель указывал на возможную аналогию между социальной физикой и возникающей в эти годы кинетической теорией.
Максвеллу было также известно, что Рудольф Клаузиус в 1857 году уже применял законы теории вероятностей для выявления влияния молекулярных столкновений на величину давления, создаваемого газом на стенки сосуда. Однако Клаузиуса интересовало лишь среднее значение скорости частиц, а Максвелл попытался углубиться в теорию гораздо дальше, поставив вопрос о распределении скоростей относительно этого среднего значения, считая, что успех применения нормального распределения в усреднении социальных данных обещает и возможность его использования в теории газов. Действительно, уже в 1859 году Максвеллу удалось не только доказать, что движение частиц описывается кривой ошибок Кетле, но и использовать этот подход для описания некоторых характеристик газов.
В предыдущем разделе уже упоминалось, что предлагаемое Максвеллом распределение молекул по скоростям оставалось лишь великолепной догадкой до тех пор, пока Людвигу Больцману в 1872 году не удалось строго доказать, что распределение скоростей в любой системе движущихся частиц с необходимостью должно принять именно эту форму. Больцман тоже был знаком с работами Бокля и сразу понял почти прямую аналогию между поведением частиц газа и отдельных личностей в статистических данных переписей, используемых Боклем, в связи с чем писал: «Молекулы напоминают множество отдельных личностей, движущихся независимым образом, а свойства газа как целого при этом остаются неизменными, поскольку они определяются огромным числом молекул, усредненные параметры движения которых остаются постоянными»36.
Больцман связал газовые законы, отражающие инвариантность статистических усреднений, с постоянным доходом страховых компаний. В 1886 году друг Максвелла Питер Гутри Тэйт сравнил статистический подход кинетической теории газов с «исключительным постоянством средних годовых цифр непредсказуемых редких общественных событий, непредсказуемых, но не необычных, таких как самоубийства, рождение двойняшек или тройняшек, мертвые письма[24] и т. п., в любой стране с достаточно большим населением»37.
В наше время использование методов статистической механики для описания социальных явлений представляется новым и довольно рискованным предприятием. Лишь небольшое число специалистов по истории науки знают, как, собственно, одни идеи порождали другие, что когда-то физика и социология выросли почти одновременно из механистической философии и что при зарождении этих наук ученые не стеснялись сопоставлять поведение народных масс с поведением большого числа неодушевленных частиц.
Ограниченность, если не сказать опасность сведения человеческого поведения к законам статистики отмечалась в различных областях науки. Рассматривая случайность и беспорядок в качестве высших движущих сил изменчивости природы, Чарльз Дарвин рискнул уподобить человечество интеллектуально развившемуся семейству человекообразных обезьян в книгах Происхождение видов (1859) и более открыто в Происхождении человека (1871). Аналогия с кинетической теорией газов была отмечена сразу, в результате чего, например, Чарльз Пирс в 1877 году писал:
Мистер Дарвин предложил применить в биологии статистический метод. Именно этот подход был применен недавно в совершенно иной области науки, а именно в теории газов. Основываясь на этом подходе, Максвелл и Клаузиус... применяя теорию вероятностей... смогли получить некоторые характеристики газов, в частности, их теплопроводности, несмотря на то что они не могут рассчитывать движения конкретных отдельных частиц в таких системах. Совершенно аналогично Дарвин, несмотря на невозможность указать конкретные механизмы варьирования признаков и натурального отбора, доказывает, что при достаточно длительном развитии эти механизмы приводят или могут приводить к адаптации животных к окружающей их среде38.
Двоюродный брат Дарвина известный ученый Фрэнсис Гальтон отмечал, что концепция естественного отбора, основанная на статистической теории и естественных изменениях внутри биологических видов, прекрасно согласуется с кривой ошибок Кетле. Необходимо напомнить, что исследования по статистическому распределению физических и поведенческих характеристик человека быстро привели самого Гальтона к выводу о существовании высших и низших типов людей, причем из этого распределения и различий сразу вытекало, что люди «не обладают равноценностью в отношении социальных действий, права голоса и всего остального»39. Логическим следующим шагом такого вывода стала, конечно, идея о возможности селекции, или биологического отбора, с целью улучшения параметров распределения, что Гальтон и сделал в работе Наследственная гениальность (1869), где утверждал необходимость использования статистики в целях изучения наследования более ценных признаков. Именно для этого Гальтон сперва создал математический аппарат биометрии (т. е. методики, позволяющей измерять вариации биологических признаков), а затем стал основателем новой науки евгеники, учении об улучшении человеческого рода, печально прославившей его имя. Долгое время евгеника пользовалась большой популярностью среди социалистов, однако позднее отношение к ней резко изменилось, особенно после того как фашисты явили миру пример практической реализации этих идей.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!