Интернет-журнал "Домашняя лаборатория", 2007 №8 - Журнал «Домашняя лаборатория»
Шрифт:
Интервал:
Цифровые фильтры, используемые в приложениях линейного кодирования речи с предсказанием, могут быть либо КИХ-, либо БИХ-фильтрами, хотя БИХ-фильтры без нулей частотной характеристики используются наиболее широко. И КИХ- и БИХ-фильтры могут быть реализованы в виде лестничной структур, как показано на рис. 6.49 для рекурсивного фильтра без нулей частотной характеристики.
Данная структура может быть выведена из традиционной структуры БИХ-фильтра, но преимущество лестничного фильтра состоит в том, что его коэффициенты более связаны с результатами работы алгоритмов, которые используют модель голосового тракта, показанную на рис. 6.47, чем коэффициенты эквивалентного БИХ-фильтра.
Параметры модели лестничного фильтра без нулей частотной характеристики определяются линейной экстраполяцией голосовых отсчетов, как показано на рис. 6.50. Вследствие нестационарного характера голосовых сигналов, эта модель применяется только к коротким сегментам (обычно 20 мс). Новый набор параметров обычно определяется для каждого временного сегмента, если между сегментами нет разрывов, которые принудительно сглаживают данные.
Глава 7
Аппаратура цифровых сигнальных процессоров
Дан Кинг, Грег Гирлинг, Кен Воурин, Ноам Левин, Джесс Моррис, Уолт Кестер
Микроконтроллеры, микропроцессоры и цифровые процессоры обработки сигналов (DSP)
Традиционные компьютеры особенно хороши для применения в двух областях деятельности: (1) манипуляция данными, например, подготовка текстов и управление базами данных; и (2) математические вычисления, используемые в науке, технике и цифровой обработке сигналов. Однако, большинство компьютеров не могут одинаково хорошо работать в обеих сферах. В компьютерных приложениях, таких как, например, подготовка текстов, данные запоминаются, сортируются, сравниваются, перемещаются и т. д., и время на выполнение этих операций не имеет большого значения до тех пор, пока оно удовлетворяет конечного пользователя. В приложениях, работающих с базами данных, периодически возникает необходимость реализации математических операций, но скорость их выполнения не является главным фактором. В большинстве случаев при проектировании приложений общего назначения компании производители не концентрируют внимания на создании более эффективных программ. Прикладные программы оказываются перегруженными различными дополнительными возможностями, для каждого обновления которых требуется все больше памяти и нужны все более быстрые процессоры.
ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ КОМПЬЮТЕРОВ
РАБОТА С ДАННЫМИ ∙ МАТЕМАТИЧЕСКИЕ ВЫЧИСЛЕНИЯ
Работа с текстом ∙ Цифровая обработка сигналов
Управление базами данных ∙ Управление двигателями
Электронные таблицы ∙ Техническое моделирование
Операционные системы ∙ Обработка сигналов в реальном времени
Пересылка данных (А->В) ∙ Сложение (С = А + В)
Сравнение величин (Если А=В, то…) ∙ Умножение (С = А х В)
Время исполнения не критично, заранее не нормируется ∙ Время исполнения критично, нормируется заранее
Рис. 7.1
С другой стороны, для цифровой обработки сигналов важно, чтобы математические операции выполнялись быстро, и время, требуемое на выполнение команд, должно быть известно точно и заранее. Для этого и программа, и аппаратура должны быть очень эффективными. Как было показано в последних двух главах этой книги, наиболее важной математической операцией и ядром всех алгоритмов цифровой обработки сигналов является умножение с последующим суммированием (эта операция обозначена точкой на всех схемах алгоритмов в предыдущих главах). Быстрое выполнение операции умножения с последующим суммированием очень важно для реализации быстрого преобразования Фурье, цифровых фильтров реального времени, умножения матриц, манипуляции с графическими изображениями и т. д.
Проведенное предварительное обсуждение требований, предъявляемых к цифровым сигнальным процессорам, важно для понимания различий между микроконтроллерами, микропроцессорами и цифровыми сигнальными процессорами. Хотя микроконтроллеры при использовании в промышленных устройствах управления процессами могут выполнять такие функции как умножение, сложение, деление, они лучше подходят для приложений, где возможности процессора по реализации ввода-вывода и управления важнее, чем скорость. Микроконтроллеры, например семейства 8051, обычно содержат ЦПУ, ПЗУ, ОЗУ, последовательный и параллельный интерфейсы, счетчики и схемы прерываний. Микроконвертеры MicroConverter™ компании Analog Devices содержат не только ядро, построенное по архитектуре 8051, но также высококачественные ЦАП, АЦП и блок энергонезависимой памяти, реализованной по технологии FLASH.
МИКРОКОНТРОЛЛЕРЫ, МИКРОПРОЦЕССОРЫ И ЦИФРОВЫЕ СИГНАЛЬНЫЕ ПРОЦЕССОРЫ
• Микроконтроллеры:
♦ ЦПУ, ОЗУ, ПЗУ, последовательный/параллельный интерфейс, таймер, схемы прерываний
♦ Хорошо подходят как для тостеров, так и для управления промышленными процессами
♦ Скорость не является главным требованием
♦ Компактная система команд
♦ Примеры: 8051, 68НС11, PIC
• Микропроцессоры:
♦ На одном кристалле находится только ЦПУ — требуются дополнительные внешние устройства
♦ Процессоры с упрощенной системой команд (RISC)
♦ Процессоры со сложной системой команд (CISC)
♦ Примеры: серия Pentium, PowerPC, MIPS
• Цифровые Сигнальные Процессоры (DSP):
♦ ОЗУ, ПЗУ, последовательный/параллельный интерфейсы, схема обработки прерываний
♦ ЦПУ оптимизировано для многократно повторяющихся математических операций в реальном масштабе времени
♦ Примеры: ADSP-21 хх, ADSP-21К
Рис. 7.2
Микропроцессоры, такие как Pentium компании Intel, обычно представляют собой ЦПУ, выполненное на одном кристалле, которому требуются дополнительные микросхемы для выполнения всех вычислительных функций. Система команд микропроцессора может быть как усложненной (типа CISC), так и редуцированной (типа RISC). В усложненную систему команд (архитектура CISC) входят команды для выполнения основных операций процессора, а также отдельные сильно специализированные команды (например, для вычисления полиномов высоких степеней). Но за выполнение сложных команд на процессоре, построенном по архитектуре CISC, приходится платить: многие команды реализованы в нем в микрокоде и требуют для своего выполнения нескольких машинных циклов и места на кристалле для хранения кода микропрограммы.
Напротив, в редуцированном наборе команд (RISC-архитектура) учитывается тот факт, что в большинстве программ основные команды, такие как ЗАГРУЗКА и СОХРАНЕНИЕ В ПАМЯТИ с простыми режимами адресации, используются гораздо чаще, чем сложные команды, и должны исполняться более эффективно. Эти простые команды реализованы в ЦПУ аппаратно для выполнения за один машинный цикл, благодаря чему уменьшаются затрачиваемое время работы и сложность ЦПУ.
Хотя RISC-архитектура имеет значительные преимущества при реализации вычислительных систем общего назначения, она недостаточно хорошо приспособлена к нуждам цифровой обработки сигналов. Например, большинство
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!