Мир по Эйнштейну. От теории относительности до теории струн - Тибо Дамур
Шрифт:
Интервал:
Нам остается описать, как определяется деформация блока желе D. Когда деформация D мала, она определяется как разница между геометрической структурой деформированного и исходного недеформированного блока. Каким же образом можно измерить геометрическую структуру сплошной среды? Точно так же, как мы поступали выше, анализируя геометрическую структуру пространства при помощи визуализации. Опишем сначала визуализацию геометрии недеформированного блока желе (рассматриваемого в обычном евклидовом пространстве), представляя вокруг каждой точки блока геометрическое место точек, расположенных от данной на единичном расстоянии. Это дает регулярную сеть сфер внутри блока. Теперь мы деформируем блок, т. е. заставляем желе двигаться произвольным, но непрерывным образом (так же как деформируется содержимое тюбика зубной пасты, когда его сжимают). Это непрерывное перемещение деформации желе будет деформировать сеть сфер. Сначала центр каждой сферы смещается. Однако такой эффект сам по себе не связан с напряжением в среде, так как можно было бы, например, переместить весь блок желе вправо на один сантиметр, двигая его целиком и не создавая никакой нагрузки внутри блока. С точки зрения упругости важно, таким образом, измерить, как деформируется каждая сфера, когда она следует за движением желатина вокруг себя. Если рассматривать, как мы делаем здесь, небольшие смещения, то можно обнаружить, что сфера деформируется в «эллипсоид», т. е. в своего рода мяч для регби. Поэтому мы будем называть деформацией D математический объект, который измеряет разницу между эллипсоидом и сферой. Видно, что этот объект имеет ту же математическую природу, что и объект, описывающий наличие напряжений в среде, и, таким образом, является тензором, который называют тензором деформации{73}. Наконец, закон упругости для однородной и изотропной сплошной среды, такой как блок желе, можно получить, если записать наиболее общее линейное соотношение, которое может существовать между двумя математическими объектами одного и того же типа (тензором деформации D и тензором напряжений T){74}: D = κT.
Немного расширив понимание упругости непрерывной среды (в смысле обычной механики), мы можем вернуться к главной цели этой главы: попытке понять общую теорию относительности как теорию упругости пространства-времени. Для этого необходимо обсудить два вопроса: (i) что является аналогом D, т. е. какой математический объект описывает «деформацию» пространства-времени по отношению к «однородному» пространству-времени Минковского; и (ii) что является аналогом T или, другими словами, какой математический объект описывает причину (или источник) пространственно-временной деформации, т. е. то, без чего пространство-время оставалось бы пространством-временем Минковского. Ответ на вопрос (ii) довольно быстро был получен Эйнштейном путем следующего рассуждения.
Во-первых, Эйнштейн предложил идентифицировать метрический тензор g, описывающий пространственно-временную хроногеометрию, с гравитационным полем. Этот вывод следовал из анализа принципа эквивалентности, открытого Эйнштейном в ноябре 1907 г. Рассмотрим, например, простой случай пространства-времени Минковского. Если наблюдатель исследует пространство-время Минковского, оставаясь при этом в «инерционной» системе отсчета, т. е. в системе, движущейся без ускорения, он не будет наблюдать гравитационное поле (свободные частицы не будут «падать», но будут оставаться в покое или же двигаться с постоянной скоростью), и метрический тензор g, описывающий пространственно-временную хроногеометрию будет тривиальным (т. е. будет задаваться постоянными коэффициентами){75}. В то же время наблюдатель, находящийся в ускоряющемся лифте, т. е. использующий координаты, нелинейно связанные с обычными координатами специальной теории относительности, наблюдает два взаимосвязанных явления: (i) метрический тензор g приобретает более сложное выражение с коэффициентами, которые изменяются от одной точки к другой, и (ii) в ускоряющемся лифте возникает кажущееся гравитационное поле, т. е. частицы в нем как будто падают с ускорением. Это ускорение кажущегося притяжения напрямую связано с тем, что коэффициенты g меняются от одной точки к другой.
Осознав, что g = хроногеометрия = гравитация, перейдем к следующему этапу, состоящему в понимании того, что является источником g и тем самым источником гравитации. Со времен Ньютона известно (из-за универсальности свободного падения и равенства действия и противодействия), что масса определяет и то, как действует гравитация (определяя вес), и то, что создает гравитационное поле. Таким образом, источником гравитационного поля по Ньютону является масса. Однако, как говорилось в главе 2, специальная теория относительности полностью изменила и обогатила понятие массы. А именно: оно было заменено понятием массы-энергии – величины, сохраняющейся при любых преобразованиях, в ходе которых в силу уравнения E = mc2 масса может преобразовываться в энергию, и наоборот. В связи с этим Эйнштейн ожидал, что в качестве источника гравитации будет выступать масса-энергия, распределенная во всем пространстве-времени. Наш поиск источника гравитации, однако, не может считаться законченным, поскольку более детальный анализ причин сохранения массы-энергии на основе специальной теории относительности показывает, что плотность массы-энергии на единицу объема является лишь одной из компонент более сложного математического объекта, называемого тензором энергии-импульса. Этот тензор имеет 10 компонент: одна компонента описывает плотность массы-энергии на единицу объема, еще три описывают плотность импульса (или количества движения) на единицу объема, а остальные шесть описывают тензор напряжений в том же смысле, как введенный нами ранее тензор напряжений для трехмерной сплошной среды. Этот десятикомпонентный тензор{76}, одновременно задающий как плотность массы (являющейся предметом закона Ньютона), так и тензор напряжений (являющейся предметом закона Гука), мы будем обозначать далее через T.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!