Радиус наблюдаемой Вселенной и горизонт Вселенной - Петр Путенихин
Шрифт:
Интервал:
Для того чтобы вычислить величину радиуса наблюдаемой Вселенной, сформулируем задачу в следующем виде: какой должна быть удалённость сверхновой, чтобы за время существования Вселенной свет от неё достиг Земли. Найти исходную удалённость самой дальней сверхновой, которая может быть видна в наши дни, мы сможем, используя выведенное уравнение (10.4). Для этого сначала вычисляем путь, пройденный светом за время существования Вселенной, затем по этому времени определяем и исходную удалённость сверхновой.
На следующей диаграмме, в системе отсчёта сверхновой показаны графики движения, удаления Земли от галактики, скорость её удаления и графики реального движения фотонов (красная линия) и видимого с Земли света (красная штриховая линия) — рис. 10.2.
График движения света от начала расширения пространства, света, испущенный сверхновой показан на рисунке красной линией R_exp. Экспоненциальная форма графика движения фотонов вызвана тем, что к скорости фотона постоянно добавляется скорость "носителя света" — расширяющегося пространства.
Как видим, на момент получения света на Земле галактика будет находиться от неё на удалении в 24 млрд. световых лет. Начальную удалённость галактики от Земли, при которой в процессе расширения пространства она удалится на это же расстояние, определим обратным вычислением по уравнению движения, показанного синим графиком R. Находим, что это 8,85 млрд. световых лет. Галактика, находившаяся в начале расширения пространства именно на этом удалении от Земли, удалится от неё на 24 млрд. световых лет, на такое же расстояние, на какое фотоны вспышки удалились от неё.
Рис. 10.2
Понятно, что это самая дальняя галактика на момент начала расширения пространства, свет от которой смог достичь Земли за 14 млрд. лет (время отмечено вертикальной штриховой линией T14). Это так, поскольку мы рассмотрели именно самое большое расстояние, какое смог пройти свет за это время. При этом видна галактика будет так, будто она находится не на расстоянии 8,85 или 24, а на расстоянии 14 млрд. световых лет (кратко — Гсл — Гига-световых лет). Об этом свидетельствует тонкая красная штриховая линия Rco — график кажущегося движения света, то есть, без учёта космологического расширения пространства, согласно (10.3). Это означает, что время движения света определяется не по теоретической (8,85 Гсл) или конечной (24 Гсл), а по наблюдаемой удалённости его источника, определяемой в свою очередь по его яркости.
Графики на диаграмме создают впечатление, будто фотоны прошли более длинный путь R_exp, поскольку график его движения, красная линия R_exp завершена в точке с удалённостью в 24 млрд. световых лет, а штриховая Rco — учитываемая, наблюдаемая удалённость источника фотонов — в точке 14 млрд. световых лет. Однако выше мы вывели уравнение движения фотонов вспышки и пришли к выводу, что реально фотоны прошли всё-таки меньший путь (здесь — 14), чем конечная удалённость (24) сверхновой от Земли. На самом деле в этом нет противоречия, поскольку меньший путь, который мы вычислили, и есть путь Rco, показанный штриховой линией. Красная линия R_exp является реальным графиком движения фотонов со сверхсветовой скоростью, указывающим их удалённость во времени от точки взрыва сверхновой. В наши дни график завершается в точке наблюдения на Земле, в 24 млрд. световых лет. Однако за это же время в 14 млрд. лет по собственным часам фотонов, они прошли путь, изображённый штриховой линией Rco — это фактически пройденный фотонами путь — 14 млрд. световых лет. Иначе говоря, для фотонов вся трасса как бы делится на две части: одна впереди, перед ними, а другая — позади них. Первую трассу, впереди фотоны проходили уже после того, как она испытала экспоненциальное удлинение. Вторая часть трассы, позади них расширялась уже после того, как фотоны ушли вперёд. Поэтому общая длина трассы R_exp оказывается больше пути фотонов Rco на величину удлинения за время движения после того, как фотоны сместились вперёд. Буквально это означает, что фотоны удалились на 24 млрд. световых лет, пройдя при этом путь только в 14 млрд. световых лет. Можно интерпретировать это и так, будто сферический фронт света не просто расширяется в пространстве, а ещё и переносится вперёд, перемещается "в замороженном виде" к наблюдателю.
Рис. 10.3
Пересечение синей линии R, графика удаления Земли от сверхновой, с красной R_exp, графика удаления фотонов от сверхновой, означает, что Земля и фотоны находятся на одном и том же удалении от сверхновой, в одной и той же точке пространства, то есть, фотоны достигли наблюдателей на Земле.
Жёлтая линия v — это скорость Земли относительно сверхновой: видно, что эта скорость удаления в наши дни уже превысила 1,7 скоростей света (график показан в масштабе с 10-кратным увеличением).
Если сверхновая находится в начальный момент времени t = 0 на большем удалении, чем 8,85 млрд. световых лет, но меньшем, чем горизонт видимости Вселенной, то с Земли она будет видна только в будущем, в более позднее время. Например, свет от галактики, находившейся на удалении около 9 млрд. световых лет, Земли пока не достиг. На рисунке видно, что линии удалённости галактики (синяя) и светового потока от взрыва сверхновой (красная) явно пересекутся, но не в наши дни — 14 млрд. лет, а позднее.
Рис. 10.4
Отметим, что расстояние R_exp между фотонами вспышки и наблюдателем на Земле R постоянно уменьшается. Если в начальный момент расстояние между звездой, фотонами её вспышки и Землёй было 9 млрд. световых лет, то через 5 млрд. лет оно уменьшилось до ~ 6,8 млрд. световых лет, а через 10 млрд. лет — до ~ 4 млрд. световых лет.
Рис. 10.5
Если же в момент вспышки сверхновая находилась на меньшем удалении, чем 8,85 млрд. световых лет, то есть, ближе радиуса наблюдаемой Вселенной, то свет от неё уже был получен в прошлом. Например, на рисунке 10.5 показана звезда, которая в начальный момент находилась от Земли на удалении в 1 млрд.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!