Тайны квантового мира. О парадоксальности пространства и времени - Олег Фейгин
Шрифт:
Интервал:
Еще совсем недавно у физиков существовало своеобразное «табу» на исследование пространства и времени за границей рождения Вселенной. Сейчас уже возникло довольно много теорий, описывающих, как могло выглядеть то очень таинственное нечто, в чем и возник наш мир. Во-первых, это, конечно же, должно быть не обычное состояние иного пространства-времени. Ведь в нашей повседневной реальности вокруг нас не рождаются новые Вселенные! И даже если бы это происходило, то мы просто бы перенесли вопросы рождения Мироздания в эту старую Вселенную, а потом в еще более старую и так далее. В математике такой процесс хождения по кругу одних и тех же понятий носит название «дурная бесконечность», и он по определению не способен дать чего-либо нового познанию. Поэтому физики и рассматривают среду, где возник наш мир, как суперпространство со многими измерениями.
Тут возникает очень любопытная логическая головоломка. Ведь если геометрического центра Большого взрыва не существует, и он происходил, а по некоторым теориям и происходит, «повсюду», то где-то вокруг нас и спрятано суперпространство. Первые подозрения, как всегда в подобных случаях, вызывают так называемые сугубо квантовые объекты. Если представить наше Мироздание состоящим из этажей-масштабов, то обитать эти удивительные частицы будут на дне подвала, где-то вблизи самого фундамента мира. Этот этаж мы назовем сверхмикроскопической основой Вселенной. Там в кажущейся пустоте вакуума непрерывно бушуют штормы физических полей, периодически заставляя его выплескивать энергию — флуктуировать на более высокие масштабные этажи материи. При этом в сверхпространстве возникает вереница возмущений, чем-то напоминающих пузырьки в пенящейся жидкости. Внутри каждого такого пузырька существует особенный мир и течет собственное время, стрелка которого летит краткий миг от рождения до «схлопывания». Подавляющая доля таких миров-пузырьков имеет невообразимо малый период существования, но при этом они успевают проявить себя как полноценные замкнутые мини-вселенные.
Взрыв первичного атома Леметра
Теория Леметра обосновывала оригинальную концепцию возникновения Вселенной из особого начального состояния с очень высокой плотностью материи. В духе физических знаний своего времени он интерпретировал этот момент как распад некого первичного атома, который существовал вне времени и пространства. Леметр вычислил последующую эволюцию «взорвавшейся» Вселенной на основе уравнений общей теории относительности и теоретически вывел линейную зависимость между радиальной скоростью галактик и их удаленностью от Солнечной системы.
Компьютерная модель эволюции Мироздания (сверху вниз)
Что же удержало в свое время квантовый пузырек нашей Вселенной от практически мгновенного схлопывания? Теоретики считают, что здесь мог проявиться своеобразный эффект «неустойчивости нестабильности», в силу действия которого Вселенные типа нашей являются ярко выраженными аномалиями. Первично неустойчивое состояние вакуума в результате флуктуации топологии (образования пузырька новой Вселенной) могло привести к тому, что внутри возникшего мира вакуум начал неожиданно изменять свои свойства, стремясь к новому устойчивому пределу. Этот процесс перестройки вакуума должен, по теоретическим расчетам, сопровождаться гигантским выделением энергии, результатом чего и явился Большой взрыв. Этот процесс можно представить как своеобразный взрыв вакуума — взрыв непустой пустоты!
Естественно, что грандиозность масштаба таких взрывных процессов, скрывающихся в окружающем нас мире, вызывает очень много вопросов к обсуждаемой новой космологии. Однако исторический опыт науки, особенно последних десятилетий, показывает плодотворность подобных смелых попыток заглянуть за границу известного. В принципе — вопросы расставлены, и ответы на них должны дать будущие исследователи, которые сегодня еще учат физику в школе!
Вероятностная интерпретация событий в микромире в свое время составила основу знаменитой полемики между Эйнштейном и Бором, разделив физиков на несколько спорящих групп. Одни из них, следуя Бору, Гейзенбергу и Борну, считают, что непредсказуемый характер единичных квантовых событий является фундаментальной особенностью окружающей природы и не имеет под собой никакого более глубокого фундамента. Другие, исходя из выводов научных школ Эйнштейна и Шрёдингера, доказывают, что неопределенность хода физических процессов микромира неизбежно приводит к целому ряду логических проблем (кот Шрёдингера) и даже явных противоречий, так что квантовые представления не являются достаточно полными. Третьи, подобно Луи де Бройлю, академикам В. А. Фоку и Д. И. Блохинцеву, занимают свою оригинальную позицию, часто предлагая собственные варианты понимания квантовой теории.
Спор между сторонниками и противниками абсолютной фундаментальности квантовой теории еще далеко не закончен и изредка разгорается с новой силой, вводя в круг обсуждаемых вопросов весьма необычные и даже фантастические предметы, такие, как «сознание наблюдателя». Все это еще раз подчеркивает, насколько далеки от повседневной действительности современные концепции теоретической физики. Во всяком случае, они, так или иначе, во многом противоречат обыденным представлениям об окружающем нас классическом мире. Исходя из этого, многие ученые, особенно занимающиеся другими разделами физики, просто считают квантовую теорию очень удачным математическим образом, позволяющим успешно предсказывать исход тех или иных экспериментов в микрофизике.
Тут пришло время прервать наш рассказ о чудесах квантовой механики и немного рассказать о втором «столпе», на котором сооружен храм современной физики, — теории относительности. Мне кажется, что это прекрасно сделал один из самых знаменитых физиков современности, член Королевского научного общества Великобритании Стивен Уильям Хокинг.
Каждое утро английские студенты из знаменитого Тринити-колледжа в Кембридже, где заведовал кафедрой физики еще великий Ньютон, видят необычный самодвижущийся экипаж — коляску, в которой сидит человек с безвольно склоненной набок головой. Это спешит на лекции нынешний хозяин кафедры Ньютона замечательный физик-теоретик Стивен Хокинг. Страшный недуг поразил его тело, но не смог сломить силу воли и разум. Хокинг посещает все интересные конференции по физике во всех частях света, выступает с лекциями в других университетах и даже читал доклад по приглашению американского президента на лужайке перед Белым домом. А еще профессор Хокинг пишет прекрасные научно-популярные книги.
В небольшом фрагменте одной из таких книг С. Хокинга — «Краткая история времени от Большого взрыва до черных дыр» — и описывается теория относительности, причем сделано это мастерски, очень образно и доступно.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!