📚 Hub Books: Онлайн-чтение книгРазная литератураПредчувствия и свершения. Книга 3. Единство - Ирина Львовна Радунская

Предчувствия и свершения. Книга 3. Единство - Ирина Львовна Радунская

Шрифт:

-
+

Интервал:

-
+
1 ... 26 27 28 29 30 31 32 33 34 ... 84
Перейти на страницу:
стоящие на земле самолеты. В связи с этой особенностью за рубежом даже возникали проекты создания самолетов-штурмовиков, воздействующих на противника ударной волной.

Но вернемся к загадочному черенковскому излучению. Теперь общепризнанно, что излучение, открытое Черенковым, не что иное, как ударная световая волна!

Конечно, можно возразить: для образования ударной звуковой волны самолет или снаряд должен лететь быстрее звука. Значит, для образования ударной световой волны электрон должен лететь быстрее света? Но как это может быть? Ведь Эйнштейн еще восемьдесят лет тому назад понял, что ни одно тело, ни одна элементарная частица не может передвигаться со скоростью, превосходящей скорость света в пустоте.

Эта-то последняя оговорка и спасает положение.

Дело в том, что в веществе свет распространяется медленнее, чем в пустоте, а в некоторых веществах даже намного медленнее. Поэтому ничто не препятствует электрону, обладающему достаточной энергией, обогнать световую волну, бегущую в веществе. А при этом уже может образоваться ударная световая волна.

Теорию, объясняющую возникновение черенковского излучения, Тамм и Франк создали в 1937 году. Они неопровержимо доказали, что Черенков действительно открыл совершенно новый вид светового излучения. Отдавая должное вкладу своего учителя в открытие и объяснение природы этих волн, Черенков предложил назвать их излучением Вавилова — Черепкова.

Как же объяснили они увиденное Черенковым?

Когда жидкость, даже простая дистиллированная вода, облучается гамма-лучами радия, эти лучи выбивают из атомов жидкости электроны. А так как электроны — крошечные сгустки материи — очень легки, то удар кванта гамма-лучей действует на них, как удар ракетки на теннисный мяч. Вот почему электроны вылетают из атомов с колоссальными одинаково направленными скоростями.

Электрон, летящий в жидкости, сильно взаимодействует с атомами, лежащими вблизи его пути. Электроны этих атомов тоже начинают излучать. В результате в веществе возникают световые волны, которые разбегаются во все стороны от летящего электрона.

Если электрон летит медленнее света, то световые волны, исходящие от различных участков его пути, гасят друг друга, и мы не видим световых волн, так же как не видим носовую волну корабля, движущегося с очень малой скоростью. Иное дело, если электрон летит быстрее, чем скорость света в веществе. В этом случае световые волны, возбуждаемые электроном по мере его продвижения в веществе, складываются, образуя разбегающуюся в виде конуса световую волну.

Светящийся хвостик электрона, вернее, электронов — их в жидкости во время этого опыта летит множество — и увидел Черенков. Если бы свет, испускаемый электронами распределялся равномерно, как при люминесценции, вероятно, обнаружили бы не скоро. Конусообразное распределение света в направлении движения электронов — вот что привлекло внимание Черепкова, вот что надо на мысль об особой природе этого свечения, вошедшего в историю науки как излучение Вавилова — Черепкова.

Так объяснили Тамм и Франк странное на вид свечение. И их теория блестяще совпала со всеми опытами Черепкова, проделанными им за пять лет неустанного труда. Упорство Черепкова победило. Оправдались вдохновляющие слова английского писателя Оскара Уайльда: «Верь в себя, и другие в тебя поверят». Черенков был убежден в том, что стоит на пороге неведомого. Эту убежденность подтвердили математические расчеты. В новое открытие в конце концов поверили все.

Тетрадка в пять страниц

Много позже Вавилов обнаружил, что знаменитый лорд Кельвин еще в 1901 году указал на то, что атом, летящий в пустоте со сверхсветовой скоростью, должен создавать электромагнитную волну, аналогичную волнам Маха в акустике, ударным или носовым волнам, о которых упоминалось на предыдущих страницах.

В то время еще никто не знал, что ни одно материальное тело, в том числе и атом, не может лететь в пустоте со скоростью, превышающей скорость света. Теория относительности, основанная на постулате о скорости света как предельной скорости, была создана лишь четыре года спустя, а признание справедливости этого постулата пришло еще позже.

Но не невозможность сверхсветовой скорости явилась причиной тому, что указание Кельвина не получило дальнейшего развития и было забыто. Объяснение давней истории дал в 1961 году Франк. Он писал:

«Высказывание такого крупного физика, как Кельвин, разумеется, не могло быть забыто случайно. В нем, как вскоре выяснилось, содержалась существенная ошибка. Как ни странно, эта ошибка состояла в том, что Кельвин не довел свою аналогию со звуковыми волнами до конца.

…Теперь известно, что если сопоставить возникновение электромагнитных волн в среде с упругими волнами, то аналогия эффекта Вавилова — Черепкова с волнами Маха проявилась бы полностью. Однако во времена Кельвина такая постановка вопроса была бы крайне надуманной. Принималось, что свет распространяется в среде, которую называли мировым эфиром, и пытались наделить его своеобразными упругими свойствами. Поэтому в то время естественно было искать аналогию между свойствами волн в эфире и упругими акустическими волнами. Рассматривать движение заряженной частицы в плотной среде не было оснований, тем более что такой случай, как движение атома в плотной среде, не представлялся реальным».

После того как теория относительности стала общепризнанной, а предельная роль скорости света в пустоте стала одной из фундаментальных основ науки, высказывание Кельвина отошло в прошлое вместе с эфиром. Впрочем, предыстория этим не закончилась. В 1904 году выдающийся физик-теоретик Зоммерфельд рассчитал силу, тормозящую движение заряда, летящего со сверхсветовой скоростью в пустоте. Это было за год до создания теории относительности, а эксперименты с катодными лучами — заряженными частицами, летящими в пустоте, — привлекали всеобщее внимание.

На эту работу Зоммерфельда указал Тамму и Франку замечательный советский физик А. Ф. Иоффе. Об этом можно прочитать в статье Тамма и Франка, содержащей первое и безупречное объяснение опытов Черенкова. Теория относительности передала работу Зоммерфельда в архив науки, несмотря на то что расчеты в ней были верны. Однако верные расчеты относились к нереальному случаю сверхсветовой скорости в пустоте.

Но и это не было началом предыстории. В начале 1974 года А. А. Тяпкин направил в редакцию журнала «Успехи физических наук» письмо «О первом теоретическом предсказании излучения, открытого Вавиловым и Черенковым».

Тяпкин пишет, что недавно, просматривая работу О. Хевисайда «Об электромагнитных эффектах при движении электризации через диэлектрик», опубликованную в 1889 году, он обнаружил в ней параграф, специально посвященный движению заряда через диэлектрик со скоростью, превышающей скорость распространения света в диэлектрике. Тяпкин, обращаясь к физикам, не считает нужным подчеркнуть, что речь идет о движении заряда в диэлектрике, а не в пустоте. Что Хевисайд рассматривает задачу, точно соответствующую условиям опыта Черепкова. Вместо этого он приводит цитату из статьи Хевисайда.

Хевисайд пишет: «Ясно прежде всего, что здесь совсем не может быть возмущения впереди движущегося заряда (точечного для простоты)».

Отметим

1 ... 26 27 28 29 30 31 32 33 34 ... 84
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?