📚 Hub Books: Онлайн-чтение книгИсторическая прозаИстория математики - Ричард Манкевич

История математики - Ричард Манкевич

Шрифт:

-
+

Интервал:

-
+
1 ... 27 28 29 30 31 32 33 34 35 ... 50
Перейти на страницу:

Абель показал, что любой полиномиал выше четвертого порядка не может быть решен с помощью радикалов, вроде корней квадратных, кубических или более высокого порядка. Однако явные условия, при которых в особых случаях эти полиномиалы могли быть решены, и метод их решения сформулировал Галуа. Эварист Галуа (1811–1832) прожил короткую и богатую событиями жизнь. Он был невероятно одаренным математиком. Галуа был неумолим к тем, кого считал менее талантливым, чем он сам, и при этом терпеть не мог социальную несправедливость. Он не выказывал никаких способностей к математике до тех пор, пока не прочитал труд Лежандра «Начала геометрии» (изданная в 1794 году, эта книга в течение последующих ста лет была основным учебником). Затем он буквально проглотил остальные труды Лежандра и, позднее, Абеля. Его энтузиазм, уверенность в себе и нетерпимость привели к поистине ужасным последствиям в его отношениях с преподавателями и экзаменаторами. Галуа принял участие в конкурсе на поступление в Политехническую школу — колыбель французской математики, но из-за неподготовленности провалил экзамен. Некоторое время после знакомства с новым преподавателем, который признал его дарование, ему удавалось держать свой нрав под контролем. В марте 1829 года Галуа издал свою первую статью о непрерывных дробях, которую считал своей самой значительной работой. Он послал сообщение о своих открытиях в Академию наук, и Коши обещал представить их, но забыл. Более того, он просто потерял рукопись.

Второй провал Галуа при поступлении в Политехническую школу вошел в математический фольклор. Он настолько привык постоянно держать в голове сложные математические идеи, что его привели в бешенство мелочные придирки экзаменаторов. Поскольку экзаменаторы с трудом понимали его объяснения, он бросил тряпку для стирания с доски в лицо одному из них. Вскоре после этого умер его отец, покончивший с собой в результате церковных интриг. На его похоронах практически вспыхнул бунт. В феврале 1830 года Галуа написал следующие три статьи, послав их в Академию наук на соискание гран-при по математике. Жозеф Фурье, в то время бывший секретарем академии, умер, так и не прочитав их, и после его смерти статей среди его бумаг не нашли. Такой поток разочарований свалил бы любого. Галуа восстал против власть имущих, потому что чувствовал: они не признавали его достоинств и погубили его отца. Он с головой окунулся в политику, став ярым республиканцем, — не самое мудрое решение во Франции 1830 года. В последней отчаянной попытке он послал научную статью знаменитому французскому физику и математику Симеону Дени Пуассону (1781–1840), который в ответе потребовал дополнительных доказательств.

Это стало последней каплей. В 1831 году Галуа был дважды арестован — в первый раз за то, что якобы призывал к убийству короля Луи Филиппа, а затем ради того, чтобы его защитить, — власти опасались республиканского бунта! На сей раз он был приговорен к шестимесячному заключению по сфабрикованному обвинению в незаконном ношении формы расформированного артиллерийского батальона, в который он поступил. Освобожденный под честное слово, он занялся делом, которое вызывало у него такое же отвращение, как и все остальное в жизни. В письмах к преданному другу Шевалье чувствуется его разочарование. 29 мая 1832 года он принял вызов на дуэль, причины которой до конца не выяснены. «Я пал жертвой бесчестной кокетки. Моя жизнь гаснет в жалкой ссоре», — пишет он в «Письме всем республиканцам». Самая известная работа Галуа была набросана в ночь перед роковым поединком. На полях рассыпаны жалобы: «У меня больше нет времени, у меня больше нет времени». Он вынужден был оставить другим подробное изложение промежуточных шагов, которые были несущественны для понимания основной идеи. Ему необходимо было выплеснуть на бумагу основу своих открытий — истоки того, что ныне называют теоремой Галуа. Он закончил свое завещание, попросив Шевалье «обратиться к Якоби и Гауссу с просьбой публично высказать свое мнение не относительно правильности, а относительно важности этих теорем». Ранним утром Галуа отправился на встречу со своим соперником. Они должны были стреляться с расстояния в 25 шагов. Галуа был ранен и умер в больнице на следующее утро. Ему было всего двадцать лет.

Галуа опирался на работы Лагранжа и Коши, однако он разработал более общий метод. Это было крайне важное достижение в области решения квинтиков. Ученый уделял меньше внимания исходным уравнениям или графической интерпретации, а больше думал о природе самих корней. Для упрощения Галуа рассматривал только так называемые неприводимые квинтики, то есть те, которые не могли быть разложены на множители в виде полиномиалов более низкого порядка (как мы сказали, для любых полиномиальных уравнений до четвертого порядка есть формулы нахождения их корней). Вообще неприводимый многочлен с рациональными коэффициентами — это полиномиал, который не может быть разложен на более простые многочлены, имеющие рациональные коэффициенты. Например, (x5 - 1) может быть разложен на множители (х-1)(x4 + х3 + х2 + х + 1), тогда как (x5 - 2) неприводим. Цель Галуа состояла в том, чтобы определить условия, при которых все решения общего неприводимого многочленного уравнения могут быть найдены в терминах радикалов.

Ключ к решению заключается в том, что корни любого неприводимого алгебраического уравнения не независимы, они могут быть выражены один через другой. Эти соотношения были формализованы в группу всех возможных перестановок, так называемую группу симметрии корней — для квинтика эта группа содержит 5! = 5 х 4 х 3 х 2 х 1 = 120 элементов. Математические алгоритмы теории Галуа очень сложны, и, скорее всего, отчасти именно вследствие этого их поначалу понимали с большим трудом. Но после того как уровень абстракции позволил перейти от алгебраических решений уравнений к алгебраической структуре связанных с ними групп, Галуа смог предсказать разрешимость уравнения на основании свойств таких групп. Более того, его теория также обеспечила метод, которым можно было найти сами эти корни. Что касается квинтиков, то математик Жозеф Лиувилль (1809–1882), который в 1846 году издал большую часть работ Галуа в своем «Журнале чистой и прикладной математики», отметил, что молодой ученый доказал «красивую теорему», и для того, «чтобы неприводимое уравнение исходной степени было разрешимо в терминах радикалов, необходимо и достаточно, чтобы все его корни были рациональными функциями любых двух из них». Поскольку для квинтика это невозможно, он не может быть решен с помощью радикалов.

За три года математический мир потерял две самые яркие новые звезды. Последовали взаимные обвинения и переоценка ценностей, и Абель и Галуа добились заслуженного признания, но лишь посмертно. В 1829 году Карл Якоби через Лежандра узнал о «потерянной» рукописи Абеля, и в 1830 году разразился дипломатический скандал, когда норвежский консул в Париже потребовал отыскать статью своего соотечественника. В конце концов Коши нашел статью, но лишь затем, чтобы ее снова потеряли в редакции академии! В том же году Абелю был присужден Гран-при по математике (совместно с Якоби) — но он был уже мертв. В 1841 году была издана его биография. В 1846 году Лиувилль отредактировал некоторые из рукописей Галуа для публикации и во введении выразил сожаление, что первоначально академия отвергла работу Галуа из-за ее сложности, — «действительно, необходима ясность изложения, когда автор уводит читателя с избитого пути на неизведанные дикие территории». Он продолжает: «Галуа больше нет! Не будем впадать в бесполезный критицизм. Давайте отбросим недостатки и посмотрим на достоинства!» Плоды краткой жизни Галуа умещаются всего на шестидесяти страницах. Редактор математического журнала для кандидатов в Эколь Нормаль и Политехническую школу прокомментировал дело Галуа следующим образом: «Соискатель с высоким интеллектом был отсеян экзаменатором с более низким уровнем мышления. Barbarus hic ego sum, quia non intelligor illis[19]».

1 ... 27 28 29 30 31 32 33 34 35 ... 50
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?