📚 Hub Books: Онлайн-чтение книгРазная литератураИнтернет-журнал "Домашняя лаборатория", 2007 №8 - Журнал «Домашняя лаборатория»

Интернет-журнал "Домашняя лаборатория", 2007 №8 - Журнал «Домашняя лаборатория»

Шрифт:

-
+

Интервал:

-
+
1 ... 311 312 313 314 315 316 317 318 319 ... 463
Перейти на страницу:
и лучшей стабилизации эффективен линейный стабилизатор

• Полностью аналитический подход к расчету затруднен, для получения лучших результатов требуется создание макетов

• Однажды спроектированное — навсегда, не заменяйте составляющие компоненты без предварительной проверки их работы в макете

• На выводах питания ИС все равно необходимо использовать высокочастотную развязку

Рис 10.43

Локальная высокочастотная фильтрация напряжения питания

Описанные в предыдущей главе LC фильтры используются при фильтрации напряжения на выходе импульсного стабилизатора. Однако иногда может быть желательно расположить подобные фильтры на отдельных печатных платах, то есть там, где питание впервые попадает на плату. Конечно, если импульсный стабилизатор расположен на печатной плате, тогда LC фильтр должен быть составной частью схемы стабилизатора.

На каждом выводе питания ИС может также понадобиться локальный высокочастотный фильтр (см. рис. 10.44).

Здесь идеальным выбором являются керамические конденсаторы для поверхностного монтажа (SMD) из-за их низкого значения ESL. Важно сделать соединения с выводами питания и с заземляющей поверхностью как можно более короткими. В случае соединения с землей кратчайшим трактом является межслойный переход к заземляющей поверхности. Трассировка соединения конденсатора с землей к "земляному" выводу ИС не рекомендуется из-за появления дополнительной индуктивности дорожки. В некоторых случаях также может быть желательной ферритовая бусинка на питающем проводе.

Этот перечень является суммирующим руководством по компоновке и конструированию фильтра импульсного источника питания, которое поможет вам быть уверенным, что фильтр работает наилучшим образом:

1. Выберите самую большую величину и номинальное напряжение конденсаторов с учетом заданного пространства. Это уменьшает значение ESR и увеличивает эффективность фильтра. Подберите дроссель, у которого не слишком снижается индуктивность при номинальном постоянном токе и с низким сопротивлением на постоянном токе.

2. Используйте короткие и широкие дорожки печатной платы для понижения падения напряжения и уменьшения индуктивности. Делайте дорожки шириной минимум 0,2 дюйма на каждый дюйм длины для обеспечения наименьшего сопротивления на постоянном токе, и используйте платы с медным покрытием толщиной 1–2 унции/кв. фут (0,035-0,070 мм) также чтобы уменьшить падение напряжения IR и индуктивность дорожки.

3. Используйте короткие выводы, а еще лучше безвыводные компоненты, чтобы уменьшить индуктивность выводов. Это минимизирует даже возможность излишней ESL и/или ESR. Предпочтительны компоненты для поверхностного монтажа (SMD). Делайте все соединения с заземляющей поверхностью как можно короче.

4. Используйте заземляющую поверхность больших размеров для минимизации импеданса.

5. Выясните как ведут себя компоненты при различных частотах, температуре, токах! Используйте модели компонентов PSpice для моделирования прототипа и убедитесь, что лабораторные измерения соответствуют результатам моделирования. Хотя моделирование не является необходимостью, оно придает уверенность при проектировании, когда соответствие достигнуто (см. Приложение 15).

Локальная развязка процессоров DSP с высокой плотностью выводов

Процессоры DSP в корпусах с большим количеством выводов требуют специального подхода при локальной развязке ввиду их больших цифровых токов. Типичная компоновка развязки выглядит как показано на рис. 10.45.

Конденсаторы для поверхностного монтажа помещаются на верхнюю сторону печатной платы на рис 10.45 А. Для семейства SHARC рекомендуется восемь керамических конденсаторов по 0.02 мкФ. Они должны быть расположены как можно ближе к корпусу. Соединения с выводами VDD должны быть как можно более короткими с использованием широких дорожек. Соединения с землей должны делаться прямо на заземляющую поверхность с помощью межслойных переходов. Менее предпочтительный метод показан на рис. 10.45 В, где конденсаторы расположены на задней стороне печатной платы под корпусом. Если заземляющая поверхность под корпусом пронизана большим количеством сигнальных межслойных переходов, обратный ток конденсатора должен идти на внешнюю заземляющую поверхность, которая может быть не слишком хорошо связана с внутренней заземляющей поверхностью через межслойные переходы.

Печатная плата для корпуса BGA (выводы в виде матрицы шариков) показана на рис 10.46.

Обратите внимание, что все связи с шариками должны быть сделаны при помощи межслойных переходов к другим слоям платы. Для таких блоков часто всего используется структура дорожки в виде "кости". Затененная зона показывает положение паяльной маски. Также, как в случае с блоком PQFP, локальные развязывающие конденсаторы должны быть расположены как можно ближе к блоку с короткими связями с выводами VDD и прямыми связями через межслойные переходы к слою заземляющей поверхности.

На рис. 10.47 показана приблизительная компоновка питания и заземления для DSP типа ADSP-21160 в корпусе BGA 27x27мм с 400 шариков. Шаг шариков составляет 1.27 мм. Примерно 84 шарика используются в центре структуры для соединения с землей. Соединения с напряжением питания ядра (40 шариков) и с напряжением внешней части (46 шариков) окружают шарики заземления. Оставшиеся внешние шарики используются для различных сигналов.

Расположенные в центре шарики заземления выполняют двойную функцию. Их первая функция обеспечивать низкоимпедансную связь со слоем заземляющей поверхности. Вторая функция — отводить от корпуса тепло на заземляющую поверхность, т. е. служить теплоотводом, т. к. устройство должно рассеивать при работе в среднем около 2.5 Вт. Добавление внешнего теплоотвода, как показано, понижает еще больше температурное сопротивление переход-среда.

Работа с высокоскоростной логикой

О согласовании нагрузки дорожек печатных плат с их характеристическим импедансом с целью избежать отражения, было написано много. Хорошее правило о том, когда это необходимо, звучит так: Нагружайте линию на её характеристический импеданс в случае, если задержка на прохождение сигнала по дорожке печатной платы больше либо равна половине времени нарастания/спада (того, что быстрее) этого сигнала. Консервативный метод заключается в использовании критерия 2 дюйма (длины дорожки) на наносекунду (времени нарастания/спада). Например, дорожка платы для высокоскоростной логики со временем нарастания/спада в 1 нс должна быть нагружена на ее характеристическое сопротивление, если длина дорожки равна или больше 2 дюймов (включая все изгибы). Рис. 10.48 показывает типичное время нарастания/спада для нескольких логических семейств, включая SHARC-DSP, работающие от питания 3.3 В.

Как и ожидалось, время нарастания/спада является функцией емкости нагрузки.

Это же самое правило 2 дюйма/нс должно быть использовано в аналоговых схемах при определении того, какими должны быть линии передачи. Например, если у усилителя на выходе максимальная частота fmax, тогда время нарастания tr вычисляется по формуле tr = 0.35/fmax. Максимальная длина дорожки платы вычисляется через умножение времени нарастания на 2 дюйма/нс. Например, максимальная частота на выходе 100 МГц соответствует времени нарастания 3.5 не, тогда при длине дорожки, по которой проходит этот сигнал, больше 7 дюймов, она должна рассматриваться как линия передачи.

Выражение 10.1 может быть

1 ... 311 312 313 314 315 316 317 318 319 ... 463
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?