Магия чисел. Моментальные вычисления в уме и другие математические фокусы - Майкл Шермер
Шрифт:
Интервал:
УМНОЖЕНИЕ НА БУМАГЕ
Для умножения с ручкой и бумагой я использую метод крестнакрест, который позволяет записать весь ответ целиком в одну строчку и нигде не фиксировать промежуточные результаты! Это одна из самых впечатляющих демонстраций магии чисел, когда в вашем распоряжении есть ручка и бумага. Многие вычислители из прошлого заработали себе репутацию «молниеносных» именно этим методом. Они получали два огромных числа и записывали ответ почти мгновенно. Методу крест-накрест лучше всего обучаться на примере.
Шаг 1. Сначала умножьте 4 х 7 и получите 28, запишите 8 и мысленно перенесите 2 на следующее вычисление.
Шаг 2. Сложите 2 + (4 х 4) + (3 х 7) = 39, запишите 9 и мысленно перенесите 3 на вычисления ниже.
Шаг 3. Закончите сложением 3 + (3 х 4) = 15 и запишите 15 для получения итогового ответа.
Вы только что записали ответ: 1598.
Решим другую задачу «2 на 2», используя метод крест-накрест.
Последовательность шагов и схемы вычислений представим следующим образом:
Ответ: 5395.
Метод крест-накрест немного усложняется в задачах типа «3 на 3».
Ответ: 649 986.
Обратите внимание, что количество умножений в каждом шаге составляет 1, 2, 3, 2 и 1 соответственно. Математика, лежащая в основе метода крест-накрест, не более чем распределительный закон. Например, 853 х 762 = (800 + 50 + 3) х (700 + 60 + 2) = (3 х 2) + [(5 х 2) + (6 х 3)] х 10 + [(8 х 2) + (7 х 3) + (5 х 6)] х 100 + [(8 х 6) + (7 х 5)] х 1000 + (8 х 7) х 10 000, что в точности соответствует вычислениям по методу крест-накрест.
Можно проверить ответ с помощью модульной суммы путем перемножения модульных сумм двух чисел и вычисления модульной суммы получившегося в итоге числа. Сравните его с модульной суммой ответа. Если ответ правильный, то две модульные суммы должны совпадать. Например,
Если модульные суммы не совпадают, вы допустили ошибку. Данный метод распознает ее в среднем в 8 случаях из 9.
Что касается примера «3 на 2», процедура аналогичная, за исключением того, что вы рассматриваете сотни второго числа как нули:
Ответ: 31 302.
Конечно, на практике, как правило, просто игнорируется умножение на нуль. Метод крест-накрест подойдет для решения задач с любым количеством цифр в числе. Например, для решения задачи «5 на 5», которая приводится ниже, потребуется девять шагов. Количество умножений на каждом шаге будет 1, 2, 3, 4, 5, 4, 3, 2, 1 (в сумме 25).
Ответ: 2 231 184 483.
Вы можете проверить ответ, используя метод модульных сумм.
* * *
Шакунтала Деви: это не поддается расчету!
В 1976 году New York Times сообщила, что индийская женщина по имени Шакунтала Деви (р. 1939) сложила 25 842 + 111 201 721 + 370 247 830 + 55 511 315, а затем умножила полученную сумму на 9878 и дала правильный ответ 5 559 369 456 432 менее чем за двадцать секунд. С трудом верится, однако, что необразованная дочь обедневших родителей сделала себе имя в Соединенных Штатах Америки и Европе в качестве молниеносного вычислителя.
К сожалению, большинство по-настоящему удивительных подвигов Деви, которые были совершены благодаря маленьким хитростям, скудно документированы. Ее величайшее заявленное достижение — умножение на время двух тринадцатизначных чисел на бумаге — появилось в Книге рекордов Гиннесса как пример «человека-компьютера». Однако время вычислений в лучшем случае вызывает сомнения. Деви, мастер метода крест-накрест, перемножила 7 686 369 774 870 х 2 465 099 745 799 — числа, как сообщается, сгенерированные случайным образом в компьютерном отделе Имперского колледжа в Лондоне 18 июня 1980 года. Правильный ответ (18 947 668 177 995 426 773 730) был, якобы, воспроизведен ею за невероятные двадцать секунд. Гиннесс предлагает следующую оговорку: «Некоторые видные математики ставят под сомнение условия, при которых это было достигнуто и предсказывают, что для нее повторить такой подвиг под чрезвычайно строгим наблюдением было бы невозможно». Поскольку Деви предстояло решить 169 задач на умножение и 167 на сложение, то есть в общей сложности выполнить 336 операций, то она должна была бы производить каждый расчет в пределах десятой доли секунды без ошибок, затрачивая время на то, чтобы записать все 26 цифр ответа. Время вычисления само по себе возводит данный рекорд в категорию «это не поддается подсчету!».
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!