Происхождение всего. От Большого взрыва до человеческой цивилизации - Дэвид Берковичи
Шрифт:
Интервал:
Происхождение эукариот обычно объясняют теорией симбиогенеза, предполагающей, что вначале объединились две прокариоты. Возможно, одна из них поглотила другую или же вторглась в нее: разницы здесь практически нет. Это могли быть археи, «поглощающие» бактерий, или наоборот. По мере того как это происходило, выработались комбинации симбиотического обмена. Аэробные бактерии, способные удалять кислород, потребляя его и используя вместе с сахаром для производства энергии, были бы полезными партнерами для архей, для которых кислород является ядовитым. Фотосинтезирующие бактерии внутри крупных клеток могли бы генерировать сахар для их хозяина. Симбиотические комбинации такого рода могли дать большое эволюционное преимущество в условиях насыщающейся кислородом атмосферы, и поэтому эукариоты смогли выжить.
Считается, что органеллы, компоненты клетки, необходимые для ее существования, сформировались в результате симбиотического партнерства. Доказательством служит то, что наши «человеческие» клетки содержат органеллы, весьма похожие на бактерии, – у них даже есть собственные маленькие цепочки ДНК. Эти органеллы называются митохондриями, и заняты они преобразованием большей части энергии внутри наших клеток. Растения также имеют выглядящие как бактерии органеллы – хлоропласты, благодаря которым осуществляется фотосинтез. В любом случае симбиотические отношения хорошо подходят для использования возрастающего уровня кислорода на планете вместе со всеми сахарами и липидами, накопленными фотосинтезирующими бактериями. Сахара и жиры – гораздо более эффективные и мобильные источники энергии, чем солнечный свет, улавливая который организмы проводили весь день неподвижно. Теперь мы можем не только запасать сахар и жиры для питания, но и использовать их в качестве топлива для автомобилей и самолетов, увеличивая свою мобильность.
Эукариотическая клетка – это, по сути, комбинация нескольких предковых клеток. Поэтому естественно, что сами эукариоты крупнее прокариот и могут достигать гораздо большего размера. Размер эукариот не ограничен, потому что их органеллы распределены по всей клетке, так что по мере увеличения клетки пропорционально увеличивается и количество органелл. Прокариоты, как полагают, почти не изменили свой размер (или форму) за почти 4 млрд лет в первую очередь потому, что большинство их клеточных структур находятся на внешней клеточной мембране в виде трубочек и насосов для перекачивания химических веществ, в то время как их внутренняя часть представляет собой просто химический бульон и свободно плавающую ДНК. По мере увеличения клетки вся нагрузка по обслуживанию дополнительного объема падает на мембрану и ее структуры; если радиус прокариотической клетки увеличивается вдвое, то площадь ее поверхности растет в четыре раза, а объем – в восемь раз. В итоге поверхность клетки будет не в состоянии угнаться за объемом, и поэтому рост прокариотам попросту невыгоден.
Большее разнообразие эукариот также объясняется отличиями в воспроизводстве. Прокариоты обычно совершают деление клеток (митоз), клонируя себя. Неудивительно, что они почти не изменились. Простые одноклеточные эукариоты совершают не просто деление клетки – они еще разделяют и перетасовывают собственную ядерную ДНК, а потом соединяют ее часть с ДНК партнера посредством мейоза и полового размножения. Преимущество этих перетасовок и обмена в том, что они повышают разнообразие, а также уменьшают вероятность летальных генетических ошибок, вызванных повреждением фрагментов ДНК: поврежденные фрагменты теряются при перетасовке, зато сохраняются при простом клонировании. Разнообразие и контроль возникновения генетических ошибок стали эволюционным преимуществом, что привело к их закреплению.
Возникновение многоклеточных животных и растений, по всей видимости, началось с формирования колоний одноклеточных. В колонии все клетки идентичны, а в многоклеточном организме есть клетки специализированные, которые выполняют различные роли (как клетки наших мышц, мозга, костей, глаз). Прокариоты могут образовывать лишь простые нитевидные колонии и цианобактериальные маты; одноклеточные эукариоты могут создавать колонии различных структур, например вольвокс (подвижные шарообразные колонии водорослей, о которых шла речь в главе 1) или слизевик. Переход от колонии к многоклеточному организму, вероятно, был довольно простым, учитывая разнообразие путей адаптации и эволюции эукариот. Например, клетки на поверхности колонии отвечают за поглощение энергии и питательных веществ из окружающей среды, в то время как клетки внутреннего слоя транспортируют питательные вещества и воду внутрь колонии, образуя таким образом подобие кровеносной системы. Различие в среде внутри колонии стимулирует эволюцию ее клеток в сторону специализации. В итоге клетки, обеспечивающие, например, движение колонии или восприятие хищников и добычи, могут в определенных обстоятельствах стать эволюционным преимуществом.
Однако на возникновение многоклеточных организмов на Земле ушло очень много времени. Еще 640 млн лет назад в биосфере по‑прежнему доминировали одноклеточные организмы. Примерно с 640 млн по 540 млн лет назад существовали формы жизни, имеющие ветвящуюся и трубчатую структуру (эта эпоха называется эдиакарской), но эти организмы вымерли. Около 540 млн лет назад начался расцвет многоклеточных – появилось огромное число причудливых морских существ, большинство из которых, вероятно, вы приняли бы за страшных скорпионов, многоножек и крабов.
Это событие было названо кембрийским взрывом. После него в палеонтологической летописи появляются ископаемые останки, поскольку многие живые существа обзавелись твердыми раковинами и скелетами, которые сохраняются в целом виде. Конечно, мы остаемся в неведении о более ранних мягкотелых ископаемых существах, однако уже в наши дни современная палеонтология способна обнаружить присутствие жизни по следам биологического и генетического материала, оставленного в горных породах давно исчезнувшими беспозвоночными. Кроме того, осадочные отложения, образованные до кембрийского взрыва (сохранившиеся в виде горных пород), несут мало следов деятельности роющих животных (этот эффект называется биотурбацией), а после кембрийского взрыва такие следы широко распространяются в донных отложениях.
Появление существ, имеющих раковину, чьи твердые части состоят из карбонатных пород, могло произойти из‑за вулканогенного накопления углекислого газа в атмосфере, что вывело нашу планету из состояния «Земля‑снежок» (описанного в главе 6). Например, избыток углекислого газа, растворяясь в океанской воде и вымываясь по действием эрозии, мог обеспечить наличие материала для построения раковин. Таким образом, кембрийский взрыв могло запустить окончание ледникового периода «Земли‑снежка». За последние 400 млн лет растения и животные колонизировали сушу и продолжали эволюционировать и увеличивать многообразие, заполняя все возможные ниши и закоулки. И все же фанероза – время, прошедшее с кембрийского взрыва до наших дней, – составляет лишь около 10 % от всей истории Земли. Большую часть своей биологической истории Земля была заселена только микроорганизмами.
За время долгой истории жизни на Земле много солнечной энергии было накоплено в виде сахара, жиров и других органических веществ. В то же время в атмосфере накопилось огромное количество кислорода. Как уже отмечалось, бóльшая часть органических веществ была скрыта от кислорода под отложениями и на дне океана. И лишь незначительная часть этого органического вещества, находившаяся глубоко под поверхностью Земли, образовала под воздействием высоких температур и давления различные виды ископаемого топлива. В сущности, это был процесс медленного «плавления» молекул сахара – удаления кислорода и восстановления углерода (возвращения ему электронов, отобранных кислородом). Морские органические отложения, подверженные этому процессу, могли стать источником нефтегазовых углеводородов (молекул водорода и углерода, но без кислорода); некоторые из их запасов могли затем выйти наверх благодаря тектонике плит или оказаться у земной поверхности, когда понизился уровень моря и они оказались на суше, например в западной части нынешних Соединенных Штатов – от Техаса до Вайоминга, где во времена динозавров плескалось море. Отложения органического вещества на суше, например деревья и болота, могли бы при благоприятных условиях превратиться в уголь – относительно чистый углерод (в болотах образуется еще и торф – промежуточный продукт превращения в уголь). Нефть, газ и уголь (торф) составляют наши запасы ископаемого топлива, бóльшая их часть, около 85 % по массе углерода, приходится на уголь. Большинство его запасов было образовано около 300 млн лет назад – в геологический период, вполне заслуженно названный каменноугольным. Он продолжался, по геологическим меркам, недолго после того, как растения захватили сушу.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!