Эйнштейн - Максим Чертанов
Шрифт:
Интервал:
Штерн ему помочь не смог. Минковский, может, смог бы, но он умер в 1909 году. Пуанкаре умер только что. И он обратился за помощью к Гроссману. Он слышал, что существует какая-то геометрия Гаусса, но, возможно, есть что-нибудь и покруче? На следующий день Гроссман доложил, что подходящий язык есть — это риманова геометрия. Пайс: «Но, добавил Гроссман, это ужасная каша, в которую физику нечего и соваться. Тогда Эйнштейн спросил, есть ли другие геометрии, которые можно было бы использовать. Нет, ответил Гроссман».
Что такое риманова геометрия, в первом приближении знает и «лирик»: та, где параллельные прямые могут пересечься. Представить это на бытовом уровне легко: сходятся же меридианы на глобусе. Иногда русскоязычные авторы (не только «страшилочные») пишут, что Эйнштейн, упомянув о Римане, нарочно не назвал геометрию Лобачевского, которая появилась раньше. На самом деле было так: первую неевклидову геометрию придумал для искривленных пространств немец Карл Гаусс; его идеи развили Лобачевский, Риман и Янош Бойяи. Геометрия Лобачевского — Бойяи описывает поверхность вогнутую, как седло, геометрия Римана — выпуклую, как сфера. Кроме того, Риман целиком пересмотрел геометрию Евклида и предложил свои принципы построения геометрий, из которых следовало, что неевклидовых геометрий может быть целая куча. Поэтому есть термин «риманова геометрия» — сумма всяческих «кривых» геометрий, охватывающая все частные случаи. Ее и предложил Эйнштейну Гроссман. И стали работать — правда, Гроссман оговорился, что отвечает только за «чистую» математику. 29 октября Эйнштейн писал Арнольду Зоммерфельду, заведующему кафедрой теоретической физики Мюнхенского университета: «…я занят исключительно проблемой гравитации и думаю, что теперь мне удастся преодолеть все трудности с помощью моего друга математика. Но одно мне совершенно ясно: что никогда в жизни мне еще не приходилось так много работать и что я проникся величайшим уважением к математике, наиболее изысканные области которой я до сих пор по неразумению считал ненужной для меня роскошью. По сравнению с этой проблемой первоначальная теория относительности не более чем детская игра!»
Но риманова геометрия годилась для левой части уравнения — той, где столетия и высоты, вечность и бесконечность. А для правой — где звезды, столы, стулья и мы с вами, то бишь всяческая материя, — тоже был нужен особый язык. И его тоже подсказал Гроссман. Это тензорное исчисление, разработанное (в основном) итальянским математиком Грегорио Риччи. Тензор — это характеристика какого-нибудь объекта, записанная специальным значком. Бывает самый простой тензор, нулевого порядка, — он включает в себя только одну характеристику. Например: вы встали с левой ноги. А одним тензором более высоких уровней, включающим сразу несколько характеристик объекта, можно записать, что вы встали с левой ноги, надели зеленые ботинки и красные штаны, побрились и пошли на остановку трамвая номер пять, что на улице Ленина, дабы ехать на работу. Так что тензорная запись очень компактна: одна закорючка заменяет десяток математических величин. Выглядит она примерно так:
Итак, нужные идеи есть, языки тоже, пиши — не хочу. Но тут Эйнштейна понесло несколько не туда. Есть такое понятие: «общековариантность». То есть нарисовали вы кубик с тремя координатами — х, у, z (длина, ширина, высота); в кубике всякие физические явления происходят, звезды падают, люди бегают, швыряют друг в друга тарелками, и уравнение того, что в кубике происходит, записано так-то. Так вот, даже если координаты поменять, то есть линии изогнуть, сделать из кубика бесформенную хреновину, уравнения, описывающие события внутри этой кривой хреновины, должны иметь тот же самый вид, что и для кубика. Это и есть общековариантность. А Эйнштейн вот решил, что она не нужна и, более того, вредна и всякий раз, меняя координаты, надо уравнения сочинять по новой и это будет правильно. (Тут, по идее, надо еще много писать про эту общековариантность, и почему он от нее отказался, и что из этого вышло; автор две недели об этом читал, неделю думал, без толку исписал пять страниц, пытаясь что-то объяснить такому же, как сам, гуманитарию, и вдруг его осенило: свернем-ка долгие описания в один компактный тензор и напишем: «Короче говоря, у Эйнштейна с математикой что-то пошло не так».)
В декабре 1912 года Милева писала Элен Савич: «Он весь ушел в свою проблему, можно сказать, он только ею и живет. Мне стыдно признаться, но мы для него не важны и занимаем от силы второе место». Бедная, она уже чувствовала, что проблем на самом деле две, даже если не знала, что вторую зовут Эльзой. А он говорил, что никогда так интенсивно не работал, как осенью — зимой 1912 года; он только что влюбился и с пылом продирался через леса цифр и звезд, лифтов и трамваев, гор и рек, горячего и холодного, быстрого и медленного, и несся с бешеной скоростью, и был уверен, что идет куда надо, хотя на самом деле по кривой (во всех отношениях) дорожке его вела любовь… Представьте, и для такой ситуации один умный человек нашел литературный язык:
Когда Эйнштейн несколько лет назад предсказал, как отклонится свет при солнечном затмении, он рассчитал неправильно, и в 1912 году его могла на этом поймать аргентинская экспедиция, направившаяся в Бразилию. Затмение было, но лил такой дождь, что ничего наблюдать не удалось. Вот удача — не иначе еврейский заговор. Или наоборот: узнай он тогда, что ошибся, быстрее справился бы с задачей?
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!