📚 Hub Books: Онлайн-чтение книгРазная литератураПредчувствия и свершения. Книга 2. Призраки - Ирина Львовна Радунская

Предчувствия и свершения. Книга 2. Призраки - Ирина Львовна Радунская

Шрифт:

-
+

Интервал:

-
+
1 ... 29 30 31 32 33 34 35 36 37 ... 85
Перейти на страницу:
избрать? Чему поверить? От чего оттолкнуться? Эйнштейн не сомневался — законы сохранения отражают основные свойства природы. В 1916 году не было известно ни одного случая, когда законы сохранения нарушались. Сейчас мы знаем, что некоторые из них нарушаются. Например, при определенных процессах в атомах и при некоторых взаимодействиях элементарных частиц нарушается закон сохранения четности — различие между левым и правым при этом приобретает новое, неведомое ранее значение. Но отступления от законов сохранения энергии и импульса представляются нам и сейчас совершенно невероятными.

И тогда, вступая в неведомый квантовый мир, Эйнштейн считал необходимой предельную осторожность. Он опирается только на хорошо установленные и многократно проверенные факты, на закон сохранения энергии, на термодинамику и электродинамику. Он проводит необходимые вычисления и получает бесспорный результат: излучающая молекула или атом испытывают отдачу. Она направлена в сторону, противоположную направлению излучения фотона. Импульс отдачи численно равен энергии, унесенной фотоном, деленной на скорость света.

И еще один вывод: самопроизвольного излучения в виде сферических волн не существует. Излучается всегда фотон, уносящий порцию энергии и определенный импульс. Направление излучения и момент, когда оно происходит, зависит от случая. Совершенно так же, как при распаде радиоактивного атома…

Квантовая теория излучения стала еще более квантовой…

Был ли Эйнштейн удовлетворен? В статьях этого периода чувствуется характерная для него ответственность, высокая степень критицизма к себе. Он констатирует слабость этой теории: она не приводит к более тесному объединению с волновой теорией. Но он не отступает — уверен в надежности выбранного метода. Он объясняет, почему все существовавшие ранее теории взаимодействия излучения с веществом, учитывавшие только обмен энергией, но не обмен импульсами, не противоречили опыту. Дело в том, что для видимого света импульс каждого отдельного фотона очень мал. Его попросту не замечали.

Теперь оставалось ожидать экспериментатора, способного понять намек. Ждать пришлось семь лет.

Предсказания сбывается

Примирившись с двуединой сущностью света, с необходимостью при решении некоторых задач отдавать предпочтение его волновым, а в других случаях квантовым свойствам и идя этим путем решительнее всех, Эйнштейн продолжал настойчиво искать пути к пониманию глубинных свойств излучения. При этом он не пренебрегал ни одной возможностью, подававшей надежду обнаружить, какая из сторон — волновая или квантовая — является более фундаментальной.

Прошло четыре года. Трудных и знаменательных года. Закончилась мировая война. В России прогремели две революции. Ущербная Февральская и Великая Октябрьская. Революция в Германии потерпела поражение и была потоплена в крови. Реакция торжествовала. Голод и разруха способствовали укреплению черных сил. Шовинизм и оголтелый национализм породили первую поросль национал-социализма. Реакционеры в науке травили Эйнштейна. Его теорию относительности объявили большевистской. Работать стало трудно. Все силы уходили на защиту и дальнейшее развитие теории относительности. Лишь одна радостная весть среди охватившего Германию шабаша мракобесия: она пришла в 1919 году из-за Ламанша. Экспедиция Эддингтона обнаружила искривление лучей света, предсказанное теорией относительности! Но это лишь подлило яда в черный костер травли.

И вот в 1921 году среди шести фундаментальных работ, посвященных теории относительности, короткая заметка: «Об одном эксперименте, касающемся элементарного процесса испускания света». Создатель квантовой теории света объявляет о том, что он нашел способ, как, на основе опыта, сделать выбор между квантовым и волновым подходом. Он сообщает, что приступает к опыту вместе с Гейгером. Идея опыта проста, как почти все придуманное Эйнштейном. Пучок невзаимодействующих атомов летит в пустоте вдоль непрозрачной стенки. Он пролетает мимо узкой прозрачной щели, проделанной в стенке. Позади щели стоит линза. Свет, излучаемый атомом, через щель попадает на линзу. Тут нужно измерить частоту этого света. Волновая теория говорит: эта частота должна быть больше при приближении атома к щели и меньше при его удалении от нее. Таков результат эффекта Допплера. Обычная иллюстрация этого эффекта: повышение тона гудка при приближении паровоза к наблюдателю и понижение при удалении.

Обнаружить этот эффект в случае света не легко. Ожидаемая разность частот очень мала. Но Эйнштейн придумал простой способ преодоления этой трудности. Он решил пропускать исследуемый свет через среду, показатель преломления которой заметно зависит от длины волны света. Он выбирает сероуглерод. В таких средах скорость света зависит от частоты, поэтому волны различных частот пойдут разными путями. Расчет показал, что полуметровый слой сероуглерода позволит легко произвести измерение и отличить «тон» света, излученный атомом до и после щели. Так — выглядит опыт с волновой точки зрения.

С квантовой точки зрения атом излучает не волну, а квант — порцию света, фотон. Энергия фотона, а следовательно, частота излученного света определяется только внутренней структурой атома. Свойства фотона не зависят от того, излучил ли его атом до щели или после пролета мимо нее. Ведь свойства излучающего атома не зависят от его положения относительно щели. Никакой разницы частот фотонов, излученных до и после пролета атома мимо щели, не может быть.

Вот он, решающий опыт, судья, могущий вынести приговор — что есть свет: поток фотонов или волн?

Прошел год, прежде чем физики услышали что-то новое, касающееся задуманного опыта. Эйнштейн публикует две небольшие статьи, чрезвычайно характерные для него. Эйнштейн признает и анализирует допущенные им ошибки. Одна относится к знаменитой работе ленинградского физика Фридмана, сделавшего важнейший вывод из общей теории относительности, вывод, не замеченный автором теории. Сперва Эйнштейн счел эту работу ошибочной, но вскоре убедился в том, что Фридман прав, а ошибся он сам. Об этом Эйнштейн немедленно сообщил в том же журнале, где он критиковал Фридмана.

Вторая из двух статей касается запланированного опыта. Она начинается с краткого изложения идеи опыта и с сообщения о том, что Эрнфест и Лауэ высказали сомнение в его рассуждениях. Лауэ считает, что подробный анализ распространения света в сероуглероде и подобных ему средах, основанный на волновом подходе и учете эффекта Допплера и опирающийся на статью Эйнштейна, приводит к противоречию со вторым началом термодинамики. Значит, анализ, опубликованный Эйнштейном, не полон.

Пройти мимо этого было невозможно. Эрнфест и Лауэ — ближайшие друзья и единомышленники Эйнштейна. Лауэ, кроме того, энергично защищал его от нападок черносотенных реакционеров.

Критика друзей побудила Эйнштейна более подробно изучить волновую трактовку запланированного опыта. Он понял, что ошибся. Предсказание волновой теории при точном математическом анализе совпало с тем, что дает элементарное рассуждение на основе квантовой теории. Так впервые было установлено, что в случаях, когда к анализу явления могут быть применены как волновая, так и квантовая теории, противоречия между ними возникают лишь при недостаточно полном анализе: если не учитываются существенные детали или если вычисления проводятся недостаточно точно. При точном рассмотрении противоречия исчезают. Опыт,

1 ... 29 30 31 32 33 34 35 36 37 ... 85
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?