📚 Hub Books: Онлайн-чтение книгРазная литератураПод знаком кванта - Леонид Иванович Пономарёв

Под знаком кванта - Леонид Иванович Пономарёв

Шрифт:

-
+

Интервал:

-
+
1 ... 32 33 34 35 36 37 38 39 40 ... 109
Перейти на страницу:
вулканический остров й затем уже не меняется столетиями. Конечно, все это — и остров в океане, и весна — неожиданны лишь для тех, кто не следил за подземными толчками и равнодушно проходил мимо набухших почек. В первой части мы стремились почувствовать именно эти глухие толчки новых фактов, разглядеть то незаметное движение идей, с которых и началась весна квантовой механики.

Статья Гейзенберга с изложением идей матричной механики появилась осенью 1925 г. Это была первая последовательная теория атома, объяснившая его устойчивость. Но (вполне по законам весны!) всего полгода спустя Эрвин Шрёдингер создал еще одну, волновую механику, которая на первый взгляд была совсем непохожа на матричную механику, но столь же хорошо объясняла строение атома. Впоследствии оказалось, что и матричная, и волновая механики — просто разные формы записи единой квантовой механики. А еще через несколько лет станет ясно, что квантовая механика — не просто одна из наук, а основа всего современного научного знания.

ЛУИ ДЕ БРОЙЛЬ

Гейзенберг родился в тот год, когда была напечатана знаменитая работа Планка. Когда он заканчивал гимназию, его родина Германия воевала со всем миром: с Россией — родиной Менделеева, с Англией — родиной Резерфорда, с Францией, где в 1892 г. родился принц Луи Виктор де Бройль (1892—1987) —потомок королей и будущий Нобелевский лауреат. Как и многие в то время, де Бройль воевал и лишь после войны стал работать в лаборатории своего старшего брата Мориса, который изучал рентгеновские спектры элементов. Кроме того Морис был лично знаком с большинством ведущих физиков того времени и в его лаборатории не только хорошо знали работы Бора, но и были в курсе всех последних событий в атомной физике.

Луи де Бройля занимал все тот же вопрос: «Почему атомы устойчивы? И почему на стационарных орбитах электрон не излучает?» Первый постулат Бора выделял эти орбиты из набора всех мыслимых орбит квантовым условием, которое связывает радиус орбиты г, скорость о и массу т электрона с целым числом п квантов действия Й = /г/2л:

mvr = nh.

Де Бройль хотел найти разумные основания для этого условия, то есть стремился объяснить его с помощью других, более привычных понятий, или, другими словами, пытался понять его физический смысл.

Когда ищут объяснение непонятным фактам, как правило, прибегают к аналогиям. Точно так же поступил и де Бройль. В поисках выхода из тупика противоречивых представлений об атоме он догадался, что трудности эти сродни тем, которые возникли при попытках понять противоречивые свойства света. Со светом дело запуталось окончательно в 1923 г., когда Артур Комптон поставил свой знаменитый опыт и доказал, что рассеяние рентгеновских лучей на электронах нисколько не похоже на рассеяние морских волн, зато в точности напоминает столкновение двух бильярдных шаров, один из которых — электрон с массой /и, а другой — световой квант с энергией E — hv. После опыта Комптона и объяснения, данного им самим и Петером Йозефом Вильгельмом Дебаем (1884—1966), уже нельзя было сомневаться в том, что в природе реально существуют световые кванты — фотоны с энергией E = hvy импульсом p — hy/c и длиной волны X = c/v, которой эти кванты соответствуют.

Луи де Бройль

дуализма в природе, но в то время де Бройлю пришлось

Ни де Бройль, ни его современники не могли объяснить, что означают слова: «световые кванты соответствуют световой волне». Однако у них не было оснований подвергать сомнению эксперименты, из которых следовало, что в одних условиях световой луч ведет себя как волна с длиной X и частотой v, а в других — как поток частиц — фотонов с энергией E = hv и импульсом p^h/'k (раньше их называли корпускулами). Года через три-четыре все поймут, что это явление — лишь частный случай всеобщего корпускулярно-волнового находить верную дорогу ощупью.

ВОЛНЫ МАТЕРИИ

Де Бройль верил в единство природы, верил искренне и глубоко — как все великие ученые до него. Поэтому он не мог допустить, что луч света — нечто особенное и ни на что другое в природе не похожее. Де Бройль предположил: не только луч света, но и все тела в природе должны обладать и волновыми, и корпускулярными свойствами одновременно. Поэтому, кроме световых волн и частиц материи, в природе должны реально существовать и корпускулы света, и волны материи.

Такое простое и сильное утверждение нелегко высказать — для этого нужны смелость и вера. Еще труднее его понять — на это способен лишь непредвзятый ум, привычный к абстрактному мышлению. И вряд ли можно это наглядно представить — природа, доступная восприятию наших пяти чувств, не создала зримых образов, которые помогли бы в этих усилиях. В самом деле, при слове «частица» вам может прийти на память все, что угодно — песчинка, бильярдный шар, летящий камень, но вы никогда не вспомните морские волны или колеблющуюся струну. Для нормального человека это настолько несовместимые образы, что объединить их в один кажется противоестественным.

Всякий рассказ о рождении новой физической теории эаведомо неточен даже в устах ее автора: такой рассказ, как правило, использует готовые понятия, которых в момент создания теории не было. У ныне живущих физиков понятие «волна материи» вызывает в сознании некий сложный образ, который ни с чем привычным в окружающем нас мире сравнить нельзя. Образ этот складывается постепенно, при работе с формулами квантовой механики, при решении квантовых задач, и рассказать о нем словами довольно трудно. Понятно, что такого сложного и совершенного образа в 1923 г. у де Бройля не было. Чтобы пояснить его тогдашние рассуждения, мы также используем подходящий заменитель, а именно образ волны, которая возникает при колебаниях струны.

Хорошо известно, что при ударе по натянутой струне она начинает звучать и звук этот зависит от натяжения и от длины струны. Механизм появления звука также хорошо известен: колебания струны передаются воздуху, и мы воспринимаем уже его колебания, а не струны. Однако между ними существует однозначная связь. Например, если мы слышим ноту «ля» первой октавы, то в этот момент струна колеблется с частотой v = 440 Гц, то есть 440 колебаний в секунду. А поскольку скорость звука в воздухе равна у —344 м/с, то длина этих звуковых волн равна X = z?/v = = 0,78 м.

При колебаниях струны мы слышим основной тон — такое колебание,

1 ... 32 33 34 35 36 37 38 39 40 ... 109
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?