📚 Hub Books: Онлайн-чтение книгДомашняяАбсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер

Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер

Шрифт:

-
+

Интервал:

-
+
1 ... 35 36 37 38 39 40 41 42 43 ... 93
Перейти на страницу:

Рис. 10.8. Схематическое изображение пяти 3d-орбиталей атома водорода, обозначенных в соответствии с их формой. Каждая орбиталь имеет две узловые поверхности, а также положительные и отрицательные лепестки. На четырёх из них узловые поверхности имеют вид плоскостей, а на пятой — форму конусов. При пересечении узловых поверхностей волновая функция меняет знак. Лепестки на каждой диаграмме показывают, где расположены области наибольшей амплитуды вероятности для электрона. Четыре орбитали содержат по четыре лепестка каждая. Однако d x2 — орбиталь имеет другую форму. У неё по-прежнему две узловые поверхности, но они имеют коническую форму. Все эти волны амплитуды вероятности плавно спадают к нулю с удалением от ядра (протона), а не обрываются резко, как на этих диаграммах

При n=4 в дополнение к s, p, d-орбиталям число l может быть равно 3, что позволяет числу m принимать семь различных значений. Существует семь f-орбиталей. Эти f-орбитали имеют по три узловые поверхности и обладают очень сложными формами. Как объясняется в следующей главе, посвящённой атомам тяжелее водорода, лишь очень тяжёлые элементы обладают электронами на f-орбиталях, и эти электроны обычно не принимают участия в образовании химических связей. Многие молекулы, в особенности те, в которых основным элементом является углерод, так называемые органические молекулы, зависят в основном от 2s- и 2p-орбиталей. Однако молекулы, содержащие тяжёлые элементы, например металлы, могут зависеть также и от d-орбиталей.

В главе 11 мы построим обсуждение так, чтобы, отталкиваясь от свойств атома водорода, понять свойства всех атомов. Поскольку эти более крупные атомы содержат больше одного электрона, в игру вступает четвёртое квантовое число s. Опираясь на ряд простых правил, мы сможем понять многие свойства атомов и разобраться в том, как они образуют молекулы.

11. Многоэлектронные атомы и Периодическая таблица элементов

Свойства атомарной и молекулярной материи определяются квантовомеханическими особенностями атомов, из которых состоит вещество. Обычная поваренная соль — это хлорид натрия, NaCl. Na — это символ атома натрия. Его атомный номер — 11. Атомный номер — это число протонов в ядре, то есть величина положительного заряда ядра. У атома натрия 11 протонов в ядре и 11 отрицательно заряженных электронов. Хлор (обозначается Cl) имеет атомный номер 17. У атома хлора 17 протонов в ядре и 17 электронов. Когда поваренную соль, состоящую из маленьких белых кристаллов NaCl, опускают в воду, она растворяется. В воде Na становится положительно заряженным ионом натрия Na+ (это натрий, потерявший один электрон), хлор обращается в отрицательно заряженный хлорид-ион Cl− (это хлор, присоединивший дополнительный электрон). Натрий отдаёт электроны хлору, и в результате получается катион натрия (положительно заряженный ион) и анион хлора (отрицательно заряженный ион). Заряды, которые несут катион натрия и анион хлора, делают эти ионы легко растворимыми в воде.

Метан — это природный газ, горящий в наших печах, в газовых сушилках для одежды и на тепловых электростанциях. Его химическая формула CH4. Это означает, что он состоит из одного атома углерода (символ C, атомный номер 6), связанного с четырьмя атомами водорода (символ H, атомный номер 1). Метан не превращается в ионы, попадая в воду. В действительности он не растворяется в воде. Если не разогреть его до очень высокой температуры, как в пламени, он вообще не распадается на части. Почему NaCl распадается на отдельные ионы Na+ и Cl− при растворении в воде, почему углерод всегда образует четыре химические связи и почему метан не распадается на части в воде, образуя ионы? Ответы на эти вопросы и объяснение множества свойств всех атомов можно получить, рассматривая природу многоэлектронных атомов и совокупность систематизированной информации об атомах, содержащейся в Периодической таблице элементов.

Водород — особый

Атом водорода отличается от всех прочих атомов, и это отличие чрезвычайно важно. Атом водорода состоит из положительно заряженного ядра (протона) и одного отрицательно заряженного электрона. Единственное электростатическое взаимодействие в нём — это притяжение электрона к протону, поскольку противоположно заряженные частицы притягиваются. Следующий по простоте атом — гелий. Гелий состоит из положительно заряженного ядра с зарядом +2 (символ He, атомный номер 2) и двух электронов, каждый с отрицательным зарядом −1. Каждый электрон притягивается к ядру; кроме того, два электрона отталкиваются друг от друга, поскольку оба заряжены отрицательно. Это взаимодействие называют электрон-электронным отталкиванием. Поскольку атом водорода имеет лишь один электрон, в нём нет электрон-электронного отталкивания.

На диаграмме энергетических уровней атома водорода (рис. 10.1) орбитали с одинаковым главным квантовым числом n имеют одну и ту же энергию. Таким образом, орбитали 2s и 2p обладают одинаковой энергией. У орбиталей 3s, 3p и 3d энергия тоже одинакова и т. д. Тот факт, что энергия зависит лишь от главного квантового числа, является следствием наличия у водорода единственного электрона. На рис. 10.2, 10.7 и 10.8 формы s-, p- и d-орбиталей существенно различаются. Однако в атоме водорода электрон в среднем находится на одинаковом расстоянии от ядра независимо от формы орбиталей. Поэтому он обладает одинаковой энергией вне зависимости от того, находится он на 3s-, 3p- или 3d-орбитали. Почему? Потому что электрон испытывает одинаковое притяжение к ядру, если усреднять его по пространственному распределению, задаваемому волновыми функциями 3s, 3p или 3d.

Формы орбиталей важны для атомов крупнее водорода

При наличии в атоме более чем одного электрона форма орбиталей становится важна. В атоме гелия, если два его электрона поместить на 2s-орбиталь, энергия будет ниже, чем если поместить их на 2p-орбиталь. В среднем два электрона на 2s-орбитали находятся дальше друг от друга, чем два электрона на 2p-орбитали. Электрон-электронное отталкивание увеличивает энергию. Поскольку два электрона на 2s-орбитали находятся дальше друг от друга, электрон-электронное отталкивание (повышающее энергию) будет не таким сильным, как если бы два электрона находились на 2p-орбитали. Поэтому в многоэлектронных атомах (во всех атомах, кроме водорода) 2s-орбиталь имеет более низкую энергию, чем 2p-орбиталь. При n=3 два электрона на 3s-орбитали в среднем находятся дальше друг от друга, чем если бы они занимали 3p-орбиталь, а два электрона на 3p-орбитали находятся дальше друг от друга, чем если бы они находились на 3d-орбитали. Поэтому 3s-орбиталь ниже по энергии, чем 3p-орбитали, которые, в свою очередь, ниже по энергии, чем 3d-орбитали. Однако 3s-орбитали выше по энергии, чем 2s-орбитали. В среднем электроны на 3s-орбитали находятся дальше от ядра, поскольку 3s-орбиталь больше, чем 2s-орбиталь (см. рис. 10.2, 10.5 и 10.6), а значит, слабее притягиваются к ядру. Следствием более слабого притяжения является более высокая энергия. Притяжение к ядру связывает электрон с ядром. Принятое в физике соглашение о знаке потенциальной энергии устанавливает, что более сильная связь соответствует более низкой энергии. Электроны проваливаются в притягивающий колодец положительно заряженного ядра. Чем сильнее притяжение, тем глубже погружается электрон в потенциальную яму и тем больше нужно энергии, чтобы извлечь из неё электрон, то есть оторвать его от ядра.

1 ... 35 36 37 38 39 40 41 42 43 ... 93
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?