В другой инерциальной системе координат это расстояние можно вычислить с использованием знания о величине скорости света, величине измеренного в неподвижной системе координат расстояния и скорости относительного движения центров двух систем отсчета. Введение понятия об инвариантном интервале, или времени собственном, как это принято в современной физике, вносит свои коррективы в формулировку ставящейся задачи, поскольку нам необходимо определять не соответствие координат разных систем отсчета, а найти связь между изменениями четырех независимых переменных в разных системах отсчета. При этом мы имеем две четырехмерные системы координат, каждая из которых является неподвижной относительно движущейся произвольно выбранной точки. В одной из систем это движение осуществляется как по временной, так и пространственным координатам, в то время как в другой – только по временной координате. Причем в последней из этих систем движение точки по временной координате согласовано с движением этой же точки по всем четырем координатам в первой из указанных систем отсчета. В общепринятой в настоящее время форме математического обоснования специальной теории относительности для сравнения различных систем координат используют пару идентичных часов, устанавливаемых в центре неподвижной системы координат и на движущемся объекте, полагая, что последние использует наблюдатель, находящийся в системе, где движение тела происходит только по временной координате. Однако такой подход может иметь место только в случае трехмерных, а не четырехмерных систем координат, как это постулируется в специальной теории относительности. В действительности в полном соответствии со специальной теорией относительности мы имеем одни единственные часы, установленные в общем для двух развернутых относительно друг друга четырехмерных систем координат. При этом необходимо ввести условие, что часы в центре системы, где движение тела происходит только по временной координате, показывают то же самое время, что и часы, размещенные в трехмерном пространстве на движущемся теле. Но для описания механического движения тела воспользоваться можно только часами, где это движение осуществляется, то есть в системе, где есть движение по всем координатам четырехмерной системы отсчета. Для часов на наблюдаемом в трехмерном пространстве теле такое движение отсутствует – их показания совпадают с показаниями часов, размещенных в центре системы, где есть движение тела только по временной координате. И для того, чтобы сравнивать показания одних и тех же часов с помощью времени, используемого в трехмерном пространстве, необходимо ввести понятие об инвариантном интервале для различных четырехмерных систем отсчета. При этом базовой (неподвижной) системой может быть только такая, где можно экспериментально определить координатное положение тела и параметры его трехмерного движения. И тогда правомерным следует признать подход к определению статуса неподвижной системы координат, использованный в [5], а не в [8]. В этом случае связь между различными определениями одного и того же четырехмерного инвариантного интервала выражается не через сравнение описаний длины интервала с помощью определения его длины через изменение координат двух четырехмерных систем координат, а через связь для трехмерного пространства между показаниями часов неподвижного наблюдателя и расположенных на движущемся теле часов либо как как
, либо как
. Данные выражения легко получить и без рассмотренных ранее математических выкладок, путем простого сравнения метрик (правил определения расстояния между точками) двух различных четырехмерных систем координат, в одной из которых наблюдается движение тела как в трехмерном подпространстве, так и по временной координате, а в другой – только по временной координате. В этом случае на основании инвариантности времени собственного и разных метрик можно записать
, c=1. А так как начальным условием является
, то
. При этом ни о каких иных пространственных преобразованиях не может быть и речи. Более того, при таких видах преобразований построенные нами четырехмерные системы координат будут полностью удовлетворять принципу однородности и изотропности пространства, в то время как именно изотропности пространства одна из систем координат при преобразованиях Лоренца не соответствует.
Сам же переход к сравнению изменений движений тела в четырехмерном пространстве вместо сравнения инерциальных систем примечателен тем, что один единственный наблюдатель, учитывая свойство тождественности по определению инерциальных систем координат и первый постулат специальной теории относительности, не нуждается во втором движущемся относительно него наблюдателе, чтобы определить ход часов у этого наблюдателя. Вполне достаточно использовать собственные часы и определять влияние конечности скорости света на результаты его наблюдения за движущимся объектом на основании их показаний. Таким образом, задача преобразования координат может быть заменена задачей определения особенностей наблюдения неподвижным наблюдателем движущегося объекта при условии конечности скорости света. Для решения такой задачи принципиально необходимо, чтобы соблюдались два положенных в основу специальной теории относительности условия: о тождественности (неотличимости) хода «внутренних» часов в любой из сравниваемых четырехмерных систем координат и о зависимости при переходе к трехмерному пространству хода движущихся часов от хода часов неподвижного наблюдателя и изменения положения тела в трехмерном пространстве. И для такой задачи нет необходимости соблюдения одновременности происходящих с телом изменений положения с показаниями часов у наблюдателя, а также начального нахождения тела в месте расположения неподвижного наблюдателя. Данные ограничения необходимы только в случае сравнения абсолютных значений координат, а не их бесконечно малых изменений. Данное обстоятельство обусловлено как однородностью времени, так и тем, что мы имеем дело с инерциальным движением тела в трехмерном пространстве с постоянной скоростью.
Из-за конечности скорости света кроме эффекта изменения масштаба времени существует также эффект отставания показаний часов на удаленном от наблюдателя объекте, но этот эффект из-за своей очевидности в специальной теории относительности и в данной книге дополнительно не рассматривается.
Подчеркнем, что Альберт Эйнштейн выбрал лишь одну из возможных форм преобразования координат, аналогично которой сконструировал инвариантные преобразования энергии и импульса в различных инерциальных системах координат. Данный прием нахождения инвариантных выражений (групп Лоренца) был распространен на все физические законы и получил в дальнейшем признание в виде принципов лоренц-инвариантности и лоренц-ковариантности. Но для таких соотношений невозможно применить указанную выше альтернативную форму преобразований, так как при этом теряется свойство инвариантности. Казалось бы, выбор единственно возможной формы инвариантного интервала очевиден, но так ли это?
Указанные выше определения времени собственного получены в результате использования простых геометрических правил для прямоугольных систем координат и требуют постулирования постоянства скорости света в любых системах отсчета. И предопределены они только тем обстоятельством, что скорость света является величиной конечной. Однако это сказывается не на характере протекания физических процессов, а на их визуальном исследовании. Принцип же лоренц-ковариантности считается проявлением общего закона природы, который не зависит от того, наблюдается или
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!