Фабрика планет. Экзопланеты и поиски второй Земли - Элизабет Таскер
Шрифт:
Интервал:
История изучения экзопланет, как позже поведает мне за кружкой пива австралийский планетолог Стивен Кейн, делится на две части — до открытия HD 209458 b и после него.
HD 209458 b — очередная планета размером с Юпитер, которая располагается недалеко от своей звезды, совершая оборот по орбите всего за трое с половиной суток. Ее неуклюжее название является примером следования правилам астрономической номенклатуры: HD представляет собой сокращение названия каталога Генри Дрейпера (Henry Draper), а 209458 — порядковый номер звезды в этом каталоге. Как и 51 Пегаса b, HD 209458 располагается в созвездии Пегаса, но в три раза дальше от нас, на расстоянии 150 световых лет. Впервые планета была обнаружена методом лучевых скоростей, позволившим зафиксировать колебания ее звезды. Однако наличие столь крупной планеты в непосредственной близости от звезды означало высокую вероятность того, что она совершит транзит, который можно будет наблюдать. Решив воспользоваться этой заманчивой возможностью, две группы исследователей начали вести наблюдения за светом от HD 209458.
Увидеть четко очерченный силуэт планеты, проходящей по диску звезды, находящейся дальше нашего Солнца, невозможно. Все, что мы видим, — это небольшое снижение яркости света (астрономы говорят: блеска) звезды, которое можно сравнить с мерцанием. Такое затемнение является крайне незначительным. Даже для HD 209458 b, газового гиганта размером с Юпитер, падение блеска составляет всего лишь порядка 1–2%. Для планеты размером с Землю эта величина опускается ниже одной сотой процента.
Несмотря на эти затруднения, обе группы, обратившие внимание на HD 209458, зафиксировали характерное уменьшение блеска звезды, продолжавшееся пару часов. Полученные ими результаты были одновременно опубликованы в одном и том же выпуске The Astrophysical Journal в декабре 1999 г. Наблюдавшиеся падения блеска звезды точно соответствовали периодическим изменениям положения звезды, определяемым с помощью метода лучевых скоростей. Так была обнаружена первая транзитная экзопланета.
Новый метод обнаружения планет получил название транзитного, так как был основан на обнаружении прохождения планеты по диску звезды: в отличие от метода лучевых скоростей, при котором оценивается масса планеты, в транзитном методе учитывается ее радиус. Более значительное падение блеска звезды соответствует более крупной планете. В результате HD 209458 b стала первой экзопланетой, размер которой удалось определить.
Помимо размера планеты данный метод также позволяет узнать ориентацию орбиты. Зная время прохождения планеты по диску звезды (продолжительность падения яркости) и время обращения вокруг звезды (промежуток между падениями яркости), можно прочертить траекторию планеты. Это позволяет исключить характерную для метода лучевых скоростей погрешность при измерении массы. Таким образом, комбинируя методы, можно получить точные значения массы и радиуса новой планеты.
Масса и радиус — это не просто физические характеристики планеты. Вместе они позволяют оценить ее среднюю плотность, а это уже шаг к пониманию того. что она из себя представляет.
Каменистая планета, существенную часть поверхности которой занимает суша, то есть такая, как Земля, имеет высокую плотность — 5,51 г/см3. При этом железное ядро Земли значительно плотнее этого значения, а плотность вещества у поверхности меньше. Поэтому указанное выше значение плотности является усредненным показателем для всех составляющих планеты.
Что касается гиганта вроде Юпитера, то, учитывая, что большую часть этой планеты составляет водород, его впечатляющей массе соответствует еще более впечатляющий радиус. В силу этого средняя плотность планеты очень мала и составляет всего лишь 1,33 г/см3.
В случае с HD 209458 b результаты измерения этих характеристик оказались не менее удивительными, чем удивительная близость орбиты планеты к звезде. Оказалось, что при массе, составляющей две трети Юпитера, экзопланета больше его на треть, и ее плотность составляет всего лишь 0,37 г/см3. Этот юпитероподобный газовый гигант явно раздут.
Измерение колебаний лучевой скорости и падения яркости при транзите — далеко не простая задача. Одни планеты не проходят по диску своей звезды, другие — не создают настолько сильных колебаний, чтобы их можно было отличить от собственных изменений в скорости движения звезды. Тем не менее появление методов изучения строения экзопланет стало огромным шагом вперед — шагом, которого было достаточно для того, чтобы положить начало куда более масштабному проекту по исследованию экзопланет.
Ранним утром 7 марта 2009 г. со стартовой площадки на базе ВВС США на мысе Канаверал во Флориде отправилась в космос ракета-носитель. На ее борту находился первый космический телескоп, предназначенный для поиска планет.
Телескоп назвали в честь Иоганна Кеплера, астронома, проделавшего кропотливую работу по вычислению параметров движения планет в нашей Солнечной системе. В знак уважения к вкладу Кеплера в прогнозирование транзитов ближайших к нам планет его именем был назван аппарат, предназначенный для наблюдения за транзитом тысяч планет.
Оказавшись в космосе, телескоп «Кеплер» выполнил маневр, в результате которого оказался на орбите, позволяющей ему следовать за Землей вокруг Солнца. Наконец 7 апреля был сброшен пылезащитный слой, и на «Кеплер» впервые попал свет. Благодаря зеркалу диаметром 1,4 м, направленному на богатый звездами участок нашей Галактики в районе созвездий Лебедь и Лира, «Кеплер» был способен наблюдать более чем за 100 000 звезд одновременно.
Для обнаружения проходящих по диску звезды экзопланет космический телескоп использовал транзитный метод, фиксируя падения яркости звезд. Находясь за пределами рассеивающей свет атмосферы Земли, «Кеплер» имел намного большую чувствительность к малейшим колебаниям света звезд, чем любой телескоп на поверхности нашей планеты.
Проект имел грандиозный успех. На состоявшемся в январе 2015 г. зимнем заседании Американского астрономического общества команда проекта «Кеплер» объявила о 1000-м подтверждении открытия планеты. И это не считая свыше 4000 кандидатов в планеты, существование которых вызывало сомнения и нуждалось в подтверждении в ходе дальнейших наблюдений. Официальной целью миссии считался поиск землеподобных планет, но истинное значение работы телескопа «Кеплер» заключается в демонстрации колоссального разнообразия и многочисленности планет в нашем галактическом окружении. За 20 лет мы перешли от теорий, в которых все аспекты процесса формирования планет описываются исключительно на материале одной-единственной Солнечной системы, к теориям, основанным на сопоставлении более чем 500 различных планетных систем.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!