Стеклянная клетка. Автоматизация и мы - Николас Дж. Карр
Шрифт:
Интервал:
«Устремления и вера, лежащие в основе господствующего подхода к конструированию автоматизированных систем, – продолжают авторы, – оказались наивными и вредоносными. Несмотря на то что автоматизированные системы часто действительно повышали точность и экономичность операций, они не оправдали других надежд, породив целый ряд новых проблем. Большинство недостатков проистекает из того, что даже высокоавтоматизированные системы требуют для своей работы вмешательства оператора, а следовательно, общения и согласованности действий между человеком и машиной». Системы конструировались без учета особенностей людей, которые с ними работают, часто отличались ограниченной осведомленностью о выполняемой работе и были лишены осмысленного доступа к окружающему миру. Восполнить эти недостатки может только человек. Автоматизированные системы не знают, когда надо начинать диалог с человеком о своих намерениях или требовать от него дополнительной информации. Машины не всегда обеспечивают адекватную обратную связь с человеком, испытывающим трудности с определением текущего состояния автоматизированной системы и оценкой ее поведения, а следовательно, и с определением момента, когда необходимо вмешаться для предотвращения нежелательных действий автомата. «Многие проблемы, отягощающие работу автоматизированных систем, возникают из-за неспособности спроектировать взаимодействие человека с машиной так, чтобы оно имитировало основные свойства взаимодействия людей», – заключают авторы статьи [19].
Инженеры и программисты еще больше усугубляют проблему, когда скрывают принципы работы системы от оператора, превращая каждую из них в непроницаемый черный ящик. Нормальным людям не хватает ума или образования для того, чтобы понять все сложности и хитросплетения работы программ или роботов. Если подробно рассказать человеку об алгоритмах или процедурах, управляющих работой системы, то можно либо его смутить, либо – что еще хуже – поощрить на самостоятельные действия с программным обеспечением. Гораздо безопаснее держать людей в неведении. Здесь опять кроется попытка избежать ошибок человека, сняв с него ответственность. Но, как ни парадоксально, при таких условиях повышается вероятность ошибок. Неквалифицированный оператор – это опасно. Профессор эргономики из Университета Айовы (University of Iowa) Джон Ли пишет: «Для автоматизированных систем характерно применение контролирующих алгоритмов, в которые заложены способы, противоречащие стратегии и ментальной модели, свойственной человеку, работающему с системой. Если человек не понимает эти алгоритмы, то он не может предвидеть ни поведение, ни ограничения автоматизированной системы. …Человек и машина, опирающиеся на противоречащие друг другу принципы, кончают тем, что движутся в противоположные стороны. Неспособность человека понять принципы устройства машины, на которой он работает, может также подорвать уверенность в своей компетенции, что удерживает его от вмешательства, когда ситуация начинает выходить из-под контроля системы» [20].
Специалисты по инженерной психологии давно призывают программистов и разработчиков вычислительной техники отойти от ориентированного на технологии подхода и направить усилия на создание автоматики, нацеленной на человека. Проекты должны начинаться с тщательного рассмотрения сильных и слабых сторон людей, которые будут работать с новой машиной или каким-либо иным способом с ней взаимодействовать. Такой подход вернет техническое развитие к его гуманистическим принципам, вдохновлявшим первопроходцев эргономики. Задача в этом случае будет состоять в распределении ролей и обязанностей, основывающихся только на скорости и точности компьютера, но с учетом качеств человека и возможностей включения его в рабочий цикл [21].
Удивительно, но достигнуть такого равновесия нетрудно. За десятки лет эргономические исследования показали, что эта задача может быть решена рядом простых способов. Систему надо запрограммировать так, чтобы через короткие и нерегулярные интервалы контроль над работой передавался от компьютера оператору. Ожидание момента, когда может потребоваться принятие решений, заставит людей быть в тонусе, сохранять внимание и мотивацию, разбираться в ситуации и повышать квалификацию. Разработчики программного обеспечения могут ограничить объем автоматизации, предоставив людям возможность выполнять важные операции, а не быть пассивными созерцателями происходящих на экране событий. Предоставление человеку большего объема работы помогает поддерживать эффект порождения. Программист может также обеспечить оператора прямой и обратной сенсорной связью с системой на всех этапах работы, используя для этого звуковые и тактильные средства, а также визуальную информацию на дисплее. Регулярная обратная связь усиливает вовлеченность оператора в работу системы и помогает ему сохранять бдительность.
Одно из самых интересных последствий подхода, ориентированного на человека, – это адаптивная автоматизация. В соответствующих системах компьютер запрограммирован так, что он сам обращает пристальное внимание на работающего с ним человека. Разделение труда между программой и оператором постоянно корректируется в зависимости от того, что происходит в каждый данный момент [22]. Если компьютер уловил, что оператор должен выполнить какое-то сложное действие, то машина может взять на себя все сопутствующие работы. Избавленный от необходимости отвлекаться на второстепенные задачи оператор сосредоточится на решении главной проблемы. При спокойном течении событий ЭВМ может передать выполнение рутинных операций человеку, что позволяет ему сохранять осведомленность о ситуации и совершенствовать навыки. Используя аналитические возможности электроники в гуманистических традициях, адаптивная автоматизация ставит своей целью держать оператора на пике кривой Йеркса – Додсона, предотвращая как чрезмерное увеличение, так и уменьшение когнитивной нагрузки. Министерство обороны США, породившее в свое время систему Internet, в настоящее время вплотную занимается проектами «нейроэргономических» систем, которые, используя разнообразные датчики работы головного мозга и тела, могут улавливать когнитивное состояние человека, а затем регулировать параметры задач таким образом, чтобы компенсировать недостаток восприятия, внимания или рабочей памяти [23]. Адаптивная автоматизация сулит большие перспективы в отношении внесения толики человечности в отношения между обычными пользователями и компьютерами. Первые пользователи таких систем говорят, что чувствуют себя так, словно общаются с коллегой, а не с машиной.
Исследования последствий автоматизации в основном посвящены изучению больших, сложных систем, связанных с рисками, например с управлением самолетами, работой машинных залов больших предприятий и военными операциями. Отказ таких систем может привести к гибели людей и материальному ущербу. Однако эти исследования важны также и для разработки вспомогательной автоматизации принятия решений, которая используется врачами, юристами, менеджерами и другими специалистами при анализе данных. Эти программы многократно тестируют, чтобы сделать их простыми в обучении и использовании, но тем не менее ориентированная на технологии этика продолжает править бал. «В типичных случаях, – пишет Джон Ли, – экспертные системы работают как протезы, заменяющие несовершенное и непоследовательное человеческое мышление более точными компьютерными алгоритмами» [24]. Они создаются в первую очередь для того, чтобы вытеснить, а не поддержать человеческое суждение. С каждым следующим усовершенствованием скорости обработки введенных данных и прогнозной способности компьютера программист все больше передает ответственность за принятие решения от профессионала к программе.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!