Лестница жизни: десять величайших изобретений эволюции - Ник Лэйн
Шрифт:
Интервал:
Так зачем клетки сохраняют митохондриальный геном? По мнению такого известного вольнодумца, как Джон Аллен, чьи соображения о происхождении фотосинтеза мы обсуждали в главе з, ответ прост: для управления дыханием. Никакой другой причины было бы недостаточно. Для разных людей слово “дыхание” означает разное. Для большинства оно подразумевает лишь вдыхание и выдыхание воздуха. Но для биохимиков этот термин относится к тонкостям, сопровождающим дыхание в клетках: к последовательности невидимых глазу реакций, за счет которых молекулы пищи взаимодействуют с кислородом, генерируя в митохондриях напряжение, сравнимое с тем, что вызывает молнии. Я затрудняюсь назвать другой процесс, на который естественный отбор может действовать так же мгновенно и неумолимо, как на дыхание, в том числе и на молекулярном, внутриклеточном уровне. Например, цианиды блокируют именно клеточное дыхание, убивая клетки еще быстрее, чем человека убивает полиэтиленовый мешок, надетый на голову. Даже во время нормальной работы дыхания оно требует постоянной тонкой настройки, “подкручивания” определенных регуляторов, чтобы количество вырабатываемой энергии соответствовало потребностям в ней. Принципиально, по мнению Аллена, здесь то, что подгонка объема вырабатываемой энергии под спрос требует постоянной обратной связи, которая возможна лишь за счет управления активностью генов тут же, на месте, то есть в митохондриях. Точно так же, как тактической дислокацией войск в зоне боевых действий не следует управлять из удаленного центрального штаба, клеточное ядро — неподходящее место для тонкой настройки работы многих сотен функционирующих в клетке митохондрий. Поэтому в митохондриях сохраняется небольшой геном, позволяющий регулировать дыхание, вырабатывая именно столько энергии, сколько требуется.
Справедливость вывода Аллена еще отнюдь не доказана, хотя данные, свидетельствующие в его пользу, продолжают поступать. Если Аллен прав, то некоторые следствия, вытекающие из его концепции, помогают объяснить и особенности эволюции эукариотических клеток. Если для управления дыханием эукариотических клеток просто необходимо поддерживать целый ряд генетических аванпостов, вполне логично предположить, что крупная, сложная клетка вообще не может без них управлять своим дыханием. Представьте себе давление отбора, с которым сталкиваются бактерии и архей. И те, и другие производят АТФ точно так же, как это делают митохондрии: генерируя электрическое напряжение на мембране. Однако прокариоты используют для этого свою наружную клеточную мембрану, что накладывает ограничения на их размеры. Они как бы дышат кожей. Чтобы понять, почему это накладывает ограничения на размеры, представьте себе чистку картофеля. Если нам нужно почистить тонну картофеля, лучше выбирать самые крупные клубни, и тогда количество чищеного картофеля по отношению к количеству кожуры будет больше. И наоборот, если чистить маленькие картофелины, мы получим больше кожуры. Бактерии похожи на картофель, который дышит через кожуру: чем больше бактериальная клетка, тем труднее ей дышать[33].
В принципе, бактерии могли бы обойти эти трудности с дыханием, переведя свои мембраны для генерации энергии внутрь клеток. На практике так иногда и происходит, как мы отмечали выше: у некоторых бактерий действительно имеются внутренние мембраны, отчасти придающие им “эукариотический” вид. Однако они недалеко зашли по этому пути: в “усредненной” эукариотической клетке в сотни раз больше внутренних мембран, с помощью которых вырабатывается энергия, чем в клетках самых энергичных бактерий. Как и в отношении многих других признаков, бактерии недалеко зашли в эукариотическую часть спектра. Почему? Подозреваю, потому, что они не в состоянии успешно управлять дыханием на внутренних мембранах, если их площадь слишком велика. Для этого им пришлось бы “делегировать” на места многочисленные наборы генов, как это делается в эукариотической клетке с ее митохондриями, а устроить это не так-то просто. Все давление отбора на бактерии, заставляющее их быстро делиться и отбрасывать избыточные гены, поддерживая геном минимального размера, препятствует развитию среди них крупных, сложных форм.
Но именно это и требуется для фагоцитоза. Фагоциты должны быть достаточно крупными, чтобы пожирать другие клетки. Кроме того, им нужно немало энергии для передвижения, активного изменения формы и заглатывания жертв. Беда в том, что по мере увеличения размеров бактерии становятся менее энергичными и постепенно теряют возможность тратить энергию на движение и изменение формы. Мне кажется, что крошечная бактерия, прекрасно приспособленная к быстрому размножению, всегда одержит верх над более крупной, энергетически неполноценной, задолго до того, как та сможет обрести в ходе эволюции все атрибуты фагоцита.
В ситуации же, описываемой гипотезой “судьбоносной встречи”, все могло быть по-другому. Здесь клетки двух разных прокариот могли сосуществовать друг с другом в метаболической гармонии, оказывая друг другу взаимовыгодные услуги. Среди прокариот симбиотические отношения такого рода настолько обычны, что их можно считать скорее правилом, чем исключением. Гораздо реже ученые регистрируют физическое поглощение одного партнера другим. Когда это происходит, вся сложная клетка, включающая теперь и оказавшиеся внутри нее бактерии, может эволюционировать как единое целое. Участники симбиоза продолжают обслуживать друг друга, но все их избыточные качества постепенно теряются, пока у оказавшихся внутри бактерий не остается почти никаких функций, кроме работы на клетку-хозяина, то есть выработки энергии — в случае бактерий, ставших митохондриями.
Огромное преимущество, которое дают митохондрии, и причина, по которой митохондрии вообще позволили эукариотической клетке эволюционировать, заключается в том, что они дали ей готовую систему внутренних энергетических мембран наряду с “аванпостами” генов, необходимых для локального управления дыханием. Лишь когда клетка-хозяин обзавелась митохондриями, она смогла увеличиться в размерах в достаточной степени, чтобы стать крупным, активным фагоцитом, способным тратить на фагоцитоз достаточно энергии, не делаясь при этом неполноценным. Если так, то примитивный фагоцит, не имевший митохондрий, никогда и не существовал: без митохондрий фагоцитоз просто невозможен[34]. Эукариотическая клетка была выкована в союзе двух прокариотических клеток. Этот союз позволил снять ограничения, из-за которых бактерии были вынуждены оставаться бактериями. Когда эти ограничения были сняты, впервые стал возможен новый образ жизни — фагоцитоз. Эукариотическая клетка возникла лишь однажды потому, что союз двух видов прокариот, при котором одна клетка пробирается внутрь другой, возможен крайне редко. Это была поистине судьбоносная встреча. Всем, что нам дорого в жизни, всеми чудесами нашего мира мы обязаны одному-единственному событию, воплотившему собой счастливое сочетание случая и необходимости.
В начале главы я отметил, что мы сможем разобраться в происхождении эукариотической клетки, только когда поймем значение ее главного атрибута — ядра.
Вопросы о происхождении клеточного ядра, да и о происхождении самой эукариотической клетки, вызвали
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!