Мусорная ДНК. Путешествие в темную материю генома - Несса Кэри
Шрифт:
Интервал:
Кроме того, энхансеров гораздо больше, чем мы могли бы ожидать. В ходе недавнего широкомасштабного исследования изучались картины гистонной модификации примерно в 150 человеческих клетках. При поиске рисунков модификаций, похожих на энхансерные, оказалось возможным выявить около 400 тысяч кандидатов на роль областей-энхансеров6. Это гораздо больше, чем требовалось бы в случае существования взаимно однозначного соответствия между энхансерами и генами, кодирующими белки. И даже если мы предположим, что длинные некодирующие РНК тоже обладают энхансерами, это число все равно окажется слишком большим.
Не все энхансеры обнаружились в каждом типе клеток. Это вполне согласуется с моделью, в которой один и тот же фрагмент ДНК может обладать разными функциями в разных типах клеток, в зависимости от своих эпигенетических модификаций.
Сегодня нет четких моделей функицонирования энхансеров. Ученые предполагают, что во многих случаях они очень сильно зависят от генетического мусора иного типа — от длинных некодирующих РНК. Собственно, некоторые классы длинных некодирующих РНК могут экспрессироваться на самих энхансерах7. Многие длинные некодирующие РНК участвуют в процессах подавления экспрессии генов. Но теперь немало ученых считают, что существует и обширный класс длинных некодирующих РНК, усиливающих экспрессию генов. Впервые такую гипотезу высказали применительно к длинным некодирующим РНК, которые регулируют соседствующие с ними гены. В ходе ряда экспериментов искусственное усиление экспрессии длинной некодирующей РНК приводило к усилению экспрессии ближайшего к ней гена, кодирующего белок. И наоборот, искусственное подавление экспрессии длинной некодирующей РНК приводило к снижению экспрессии гена, кодирующего белок8.
Дальнейшие подтверждения этой гипотезы удалось получить, анализируя временной характер включения/выключения длинных некодирующих РНК и информационных РНК, которые ими регулируются (как считали ученые). Исследователи подвергали клетки воздействию стимула, который, как они уже знали, вызывает экспрессию определенного гена. Как выяснилось, усиливающая («энхансерная») длинная некодирующая РНК включалась раньше, чем информационная РНК близлежащего гена, кодирующего белок9,10. Это отвечает модели, согласно которой длинная некодирующая РНК, расположенная в области-энхансере, включается в ответ на стимул, а затем, в свою очередь, помогает усилить экспрессию гена, кодирующего белок (или включить этот ген).
Длинная некодирующая РНК способствует такому усилению не сама по себе. Для успешного осуществления процесса необходимо присутствие большого комплекса белков. Такой комплекс называется медиатором. Длинная некодирующая РНК связывается с медиатором, направляя его деятельность на близлежащий ген. Один из белков медиатора способен пристраивать эпигенетические модификации к соседствующему с ним гену, кодирующему белок[36]. Это помогает рекрутировать фермент, создающий копии информационной РНК. Затем эти копии используются как матрицы для производства белка.
Существует неизменная взаимосвязь между медиатором и длинной некодирующей РНК. Искусственно вызванные понижения уровня экспрессии длинной некодирующей РНК или какого-то белка, входящего в состав медиатора, всякий раз приводили к понижению уровня экспрессии ближайшего гена11.
Важность физического взаимодействия между длинными некодирующими РНК и медиатором показали на примере одного из генетических заболеваний человека. Речь идет о синдроме Опица-Каведжиа. Дети, родившиеся с этим недугом, испытывают трудности при обучении, у них пониженный мышечный тонус и непропорционально большая голова12. Они наследуют мутацию одного-единственного гена. Этот ген кодирует белок медиатора, взаимодействующего с молекулами длинной некодирующей РНК[37].
Чем больше ученые анализировали деятельность медиатора, тем интереснее им становились эти исследования. Одной из причин такого интереса явилось то, что медиатор отвечает за действия группы энхансеров, обладающих необычными способностями. Это так называемые суперэнхансеры. Они играют особенно важную роль в эмбриональных стволовых клетках (ЭС-клетках), плюрипотентных клетках человеческого организма, которые способны стать клетками практически любого типа13.
Суперэнхансеры — кластеры энхансеров, действующих сообща. По размерам эти кластеры примерно вдесятеро больше обычных энхансеров, а потому могут связываться с огромным количеством белковых молекул. В этом они значительно превосходят обыкновенные энхансеры. Суперэнхансеры способны резко усиливать экспрессию регулируемых ими генов. Но дело не только в числе белков, с которыми они связываются. Ученых больше интересует, что это за белки.
Как мы уже видели (глава 8), ЭС-клетки не остаются плюрипотентными по каким-то случайным причинам или просто в силу своей пассивности. Чтобы ЭС-клетки сохраняли свой потенциал, они должны очень тщательно регулировать собственные гены. Даже сравнительно малые возмущения в генетической экспрессии могут толкнуть ЭС-клетку по пути, который превратит ее в клетку специализированную. Представьте себе известную игрушку — гибкую шагающую пружину «слинки». Установим ее на верхней ступеньке длинного лестничного пролета. Малейшего толчка в нужную сторону достаточно, чтобы «слинки» начала свое весьма долгое путешествие. Может быть, лучше представить себе «слинки», которую удерживает от спуска по ступенькам небольшой грузик, прикрепленный к ее верхнему концу. Уберите груз — и пружина зашагает вниз.
Существует целый набор белков, абсолютно необходимых для поддержания плюрипотентности ЭС-клеток. Эти белки называются главными регуляторами (master regulators). Их можно уподобить грузику на верхнем конце «слинки». Уровень экспрессии главных регуляторов в ЭС-клетках очень высок, однако в специализированных клетках он гораздо, гораздо ниже.
Важную роль этих белков недвусмысленно продемонстрировали в 2006 году. Японские ученые искусственно экспрессировали комбинацию из четырех таких главных регуляторов в клетках, уже прошедших дифференциацию, обеспечив при этом очень высокие уровни экспрессии. Как ни поразительно, это породило целую череду молекулярных событий, кульминацией которых стало создание клеток, по своему действию почти идентичных ЭС-клеткам14. Это как если бы «слинки» вдруг прошагала с нижней ступеньки обратно на верхнюю. Клетки, созданные таким способом[38], в организме могут превращаться в человеческие клетки практически любого типа. Замечательная работа. Изыскания, которые за ней последовали, вызвали большое воодушевление. Ведь теперь в принципе оказалось возможным выращивать клетки-заменители для лечения огромного числа заболеваний — от слепоты и диабета первого типа до болезни Паркинсона и сердечной недостаточности.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!