📚 Hub Books: Онлайн-чтение книгДомашняяСейчас. Физика времени - Ричард А. Мюллер

Сейчас. Физика времени - Ричард А. Мюллер

Шрифт:

-
+

Интервал:

-
+
1 ... 41 42 43 44 45 46 47 48 49 ... 97
Перейти на страницу:

Почти одновременно с этим группа университета Беркли, которую помог создать Киршнер, объявила о получении такого же результата. Несколько лет спустя Сол Перлмуттер разделил Нобелевскую премию за это открытие с Брайаном Шмидтом и Адамом Риссом из конкурирующей команды.

С подтверждением ускорения Вселенной был решен вопрос с «Большим сжатием». Его не случится. Пространство будет существовать вечно, и время тоже… конечно, если только нет другого явления, которое может быть открыто и которое еще не продемонстрировало своего действия, но способно в конечном счете повернуть эволюцию вспять. Ускорение Вселенной, открытое Солом и его командой, может стать экспериментальным доказательством теории четырехмерного Большого взрыва, о которой мы поговорим далее и которая служит основой моего объяснения сейчас.

Я не ожидал, что Вселенная ускоряется. Никто не ожидал. Но я правильно предсказал студентам, что очень скоро мы узнаем, будет ли Вселенная расширяться бесконечно. А когда Сол Перлмуттер объявил о результатах эксперимента, и еще до того, как об этом сообщили газеты, я смог сообщить своему курсу, что ответ на поставленный вопрос получен.

Самая большая ошибка Эйнштейна

Ускорение Вселенной хорошо согласовывается с общей теорией относительности Эйнштейна. Вспомните – до открытия Хабблом расширения Вселенной Эйнштейн полагал, что она статична, а галактики всегда находятся на своих местах. Чтобы устранить фактор их взаимного гравитационного притяжения, Эйнштейн даже ввел космологическую постоянную, отталкивающую силу, объясняющую статичность Вселенной (это было до открытия Хаббла). Хаббл обозначил эту постоянную значком Λ, заглавной буквой греческого алфавита лямбда. Эта постоянная обозначала своего рода антигравитацию, которая, однако, происходила от пустого пространства, а не от массы. Я представляю ее себе как пространство, отталкивающее самое себя.

Когда Хаббл обнаружил, что Вселенная расширяется, постоянная лямбда оказалась ненужной, и научное сообщество стало считать ее нулем. Как я отметил в главе 12, согласно утверждению Георгия Гамова, Эйнштейн считал введение лямбды самой большой ошибкой своей жизни. Если бы он не добавил ее в свои уравнения, мог предсказать расширение Вселенной. И все-таки самой большой ошибкой Эйнштейна было то, что он назвал ошибкой свою космологическую постоянную.

Удобным способом включения космологической постоянной Λ в уравнения общей теории относительности можно назвать ее перенос (математически) в энергетическую часть уравнения и объединение с тензором Т, обозначающим плотность энергии. Это равноценно тому, чтобы представлять лямбду в качестве некоей величины энергии. И в самом деле, такой подход уже становится вполне привычным, а присутствие лямбда-члена объясняется тем, что пустое пространство заполнено темной энергией; его же плотность и давление зависят от значения Λ. Когда космологическая постоянная включается в уравнения Эйнштейна таким образом, уравнения не меняются: лямбда-члена в них как бы нет, но энергия и плотность пустого пространства больше не считаются нулем.

Темная энергия, заполняющая пустое пространство, снова звучит как напоминание об эфире… но так оно и есть. В представлениях современной космологии пустое пространство отнюдь не пустое. В дополнение к темной энергии оно, как полагают физики, включает в себя поля Хиггса[145], что заставляет частицы казаться обладающими большей массой, чем без этих полей. А Поль Дирак высказал даже идею, что пустое пространство заполнено бесконечным морем электронов с отрицательной энергией, – самое ошеломляющее предположение, которое когда-либо исходило от видного физика. (Подробнее об этом в главе 20.) Вакуум совсем не пустой.

Одна из причин, по которой теоретики любят использовать лямбда-член в качестве некоего показателя энергии, заключается в том, что они ждали его появления, руководствуясь соображениями квантовой физики. Они предполагали, что «квантовые флуктуации вакуума» будут переносить темную энергию и приведут к отрицательному давлению. Почему тогда не признать, что это предугадывание темной энергии? Дело в том, что они получили совершенно неправильные цифры. Если, согласно имеющимся научным данным, темная энергия, которая ускоряет расширение Вселенной, имеет плотность массы 10−29 г/см³, то это же значение, напророченное квантовой теорией, выражается величиной 1091. Теория ошиблась в 10120 раз. Это расхождение было названо «худшим теоретическим предсказанием в истории физики». Прорицание квантовой физики относительно темной энергии ошибочно на сотню квинтиллионов гуголов.

Могут ли квантовые флуктуации быть источником темной энергии? Вероятно. Некоторые теоретики пытаются внести расчетные поправки в свои теории, но создается впечатление, что нет пути к изменению величины во столько раз. Предполагаю, что правильное значение квантовых флуктуаций в конечном счете составит нуль (если наша квантовая теория верна) и что темная энергия в итоге окажется чем-то совершенно другим, аналогичным полям Хиггса (о них поговорим в главе 15). Но это только мое предположение.

Инфляционная модель Вселенной

Быстрое расширение Вселенной со скоростями, превышающими скорость света, составляет основную часть теории инфляции, предложенной физиками Аланом Гутом и Андреем Линде[146] и получившей дальнейшую разработку в исследованиях Андреаса Альбрехта, Пауля Штейнхардта и других. Они занимались вопросом об удивительной однородности Вселенной. Если мы посмотрим на расстояние в 14 миллиардов световых лет, увидим то пространство Вселенной, которое излучало сигналы 14 миллиардов лет назад. А если посмотрим в противоположном направлении, также увидим исходящее оттуда излучение, которое пропутешествовало по Вселенной те же 14 миллиардов лет.

Получается, две эти области Вселенной находятся друг от друга на расстоянии 28 миллиардов световых лет. Так что для сигнала было недостаточно времени, чтобы пройти расстояние от одного района до другого. Даже когда в начальный момент Большого взрыва эти области находились сравнительно недалеко друг от друга, они удалялись друг от друга слишком быстро, чтобы между ними мог возникнуть какой-то контакт. Каким же тогда образом могли они «знать», как достичь одной и той же плотности, температуры и интенсивности излучения? Как они могли стать такими похожими, если у них не было времени выровнять свои параметры? Тем не менее сигналы, которые исходят из точек Вселенной, разделенных 28 миллиардами световых лет, наблюдаются как исключительно похожие. Как это могло произойти?

1 ... 41 42 43 44 45 46 47 48 49 ... 97
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?