📚 Hub Books: Онлайн-чтение книгДомашняяЭволюция. Триумф идеи - Карл Циммер

Эволюция. Триумф идеи - Карл Циммер

Шрифт:

-
+

Интервал:

-
+
1 ... 42 43 44 45 46 47 48 49 50 ... 129
Перейти на страницу:

Иными словами, некоторые детали строения тела позвоночных появились еще у общего предка позвоночных и ланцетника. В то же время ланцетниковым недостает многого из того, что присуще позвоночным. К примеру, у них нет глаз, а нервный тяж оканчивается просто крохотным утолщением, а не настоящей массой нейронов, которую можно было бы с первого взгляда принять за мозг.

Но и у ланцетника можно найти органы, предшествовавшие возникновению глаз и мозга. Так, ланцетник воспринимает свет при помощи специального углубления, выстланного светочувствительными клетками; эти клетки объединены в сеть, подобно клеткам сетчатки у позвоночных, и присоединены к переднему концу нервного тяжа — примерно так же, как наши глаза к нашему мозгу. Пусть в крохотном утолщении на переднем конце нервного тяжа ланцетника всего несколько сотен нейронов (в человеческом мозге их 100 млрд), но он, как и мозг позвоночных, разделен в упрощенном варианте на функциональные части.

Сходство между нервным тяжем ланцетника и мозгом позвоночных распространяется и на гены, управляющие их строительством. HOX гены и другие регуляторные гены, размечающие головной и спинной мозг позвоночного, делают ту же работу и в эмбрионе ланцетника, причем почти точно в том же порядке — от головы к хвосту. В клетках развивающегося светочувствительного пятна ланцетника действуют те же гены, которые строят глаз позвоночного. Можно с уверенностью предположить, что у общего предка ланцетниковых и позвоночных те же гены отвечали за строительство такого же примитивного мозга.

После того как предки позвоночных и ланцетниковых разделились, наши предки прошли необычайный эволюционный путь. Если у ланцетника имеется комплект из тринадцати HOX генов, то у позвоночных — четыре таких комплекта, и каждый из них организован в том же порядке (от головы к хвосту). Скорее всего, дублирование первоначального набора HOX генов было вызвано мутациями. После учетверения новые гены ожидала разная судьба. Некоторые из них продолжали выполнять прежние функции и остались HOX генами. Но другие эволюционировали и получили возможность влиять на формирование зародыша иными способами.

Благодаря этой вспышке генного воспроизведения у наших предков начали появляться тела все более сложного строения. Позвоночные смогли отрастить себе носы, глаза, скелеты и мощные глотательные мышцы. В какой-то момент древней эволюции позвоночных HOX гены, отвечавшие за развитие зародыша от головы к хвосту, получили новую функцию: строительство плавников. Плавники помогали позвоночным плавать и маневрировать в воде более эффективно, чем их ланцетовидным предкам.

Вместо того чтобы просто отфильтровывать пищу из воды, ранние позвоночные теперь смогли заняться охотой. Они загоняли и добывали крупных животных, а потому и сами могли эволюционировать и стать крупнее. Благодаря генетической революции ранние позвоночные со временем дали начало акулам, анакондам, людям и китам. Без этих новых кембрийских генов мы и сегодня могли походить на ланцетников и дрейфовать в волнах океана, поводя своей крохотной безмозглой головкой.

Кто поджег кембрийский фитиль

Ключевым и необходимым условием кембрийского взрыва была эволюция строительного набора, о котором мы говорили, — нашего генетического инструментария. Однако после его появления эволюционный взрыв произошел далеко не сразу. Животные, успевшие обзавестись генетическим инструментарием, жили и развивались, вероятно, десятки миллионов лет, прежде чем 535 млн лет назад в палеонтологической летописи появились первые свидетельства кембрийского взрыва. Но почему? Если эти животные уже несли в себе громадный эволюционный потенциал, что не давало им пуститься во все тяжкие?

Вероятно, генетический инструментарий этих ранних животных можно сравнить с запалом бомбы, ожидающим, пока кто-нибудь поднесет спичку к бикфордову шнуру. До кембрия океаны были не слишком благоприятным местом для эволюции животных. Крупные активные животные, появившиеся в океанских водах в результате кембрийского взрыва, нуждались в кислороде, а химический состав пород, сформировавшихся на дне докембрийских морей, говорит о том, что кислорода в воде почти не было. Фотосинтезирующие водоросли и бактерии на поверхности воды в изобилии производили кислород, но в глубину он почти не проникал. Кислорододышащие бактерии-падальщики благополучно съедали производителей кислорода после их гибели все там же, на поверхности, а остальная часть океанских вод оставалась по-прежнему бедна кислородом.

Около 700 млн лет назад содержание кислорода в воде начало повышаться и через некоторое время достигло, скажем, половины от нынешней его концентрации. Связано это было с разломом суперконтинента. В результате активных геологических процессов большое количество углерода было увлечено на дно новых океанских бассейнов, а в атмосфере появилось больше свободного кислорода. Некоторая часть этого кислорода проникла и в океанские глубины.

После того как содержание кислорода в воде выросло, для планеты в целом, судя по всему, наступили нелегкие времена. Как утверждает гарвардский геолог Пол Хоффман, на Земле тогда наступил ледниковый период и ледники разрослись едва ли не до экватора. Для их таяния понадобилось, чтобы вулканы выпустили в атмосферу достаточно углекислого газа и заработал парниковый эффект. Жизнь во время этого глобального ледникового периода сохранялась в отдельных местах, где условия оставались терпимыми; эволюция при этом могла ускориться, возникали новые виды с новыми адаптационными механизмами. А поскольку новые генетические приспособления уже имелись, животные могли отозваться на эволюционное давление невиданной вспышкой генетического разнообразия — кембрийским взрывом.

Возможно, начало кембрийскому взрыву положили гены и физические условия, но, судя по всему, именно экология определила его продолжительность и масштабы. Среди новых животных, появившихся на свет в начале кембрийского периода, были и те, кто мог — впервые за всю историю жизни на Земле — питаться водорослями. Эти беспозвоночные обзавелись специальными ветвистыми отростками, позволявшими им улавливать пищу, и добились невероятного успеха. (Сегодня их успех развивают громадные армии изящных креветок, водяных блох и других потребителей мельчайших водорослей.) Эти существа, став достаточно многочисленными, стимулировали появление крупных и быстрых хищников, которыми, в свою очередь, могли питаться еще более крупные хищники. В океане быстро сформировалась сложная сеть переплетающихся пищевых цепочек.

Новые факторы эволюционного давления — необходимость пастись или охотиться — могли вызвать еще большую диверсификацию, причем не только животных, но и водорослей. Из водорослей в древнейших слоях палеонтологической летописи чаще всего встречаются так называемые акритархи. В докембрии акритархи были мелкими и неинтересными, но в ходе кембрийского взрыва они внезапно отрастили себе шипы и другие украшения; кроме того, появились гораздо более крупные формы. Вероятно, так развивались механизмы защиты от поедателей водорослей, ведь проглотить нечто крупное и колючее гораздо труднее. Растительноядные развивали у себя механизмы обхода защитных приспособлений и собственные устройства защиты — шипы, раковины, панцири — от хищников, которым тоже приходилось искать новые методы охоты, обзаводиться когтями и мощными зубами, а также более тонкими органами чувств. Кембрийский взрыв превратился в самоподдерживающуюся цепную реакцию.

1 ... 42 43 44 45 46 47 48 49 50 ... 129
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?