Магия математики. Как найти x и зачем это нужно - Артур Бенджамин
Шрифт:
Интервал:
Отступление
Теорема о сумме углов треугольника, равной 180°, крайне важна для понимания сути планиметрии. В других же геометрических системах она не работает совершенно: для примера можно спроецировать тот же треугольник на сферу-«глобус», причем так, чтобы он начинался на «северном полюсе», спускался к «экватору» вдоль любой из «линий долготы», там заворачивал направо в первый раз, а после прохождения четверти «планеты» – и во второй, возвращаясь к «северному полюсу». Получившийся таким образом треугольник будет иметь три прямых угла, дающих вместе не 180, а целых 270°. В сферической геометрии сумма углов треугольника есть величина непостоянная: она все больше отдаляется от значения в 180° при малейшем увеличении его площади и находится к ней в прямой пропорциональной зависимости.
На занятиях по геометрии в школе или университете очень много внимания уделяется доказательству конгруэнтности объектов: это значит, что, перемещая, вращая или отображая зеркально одну фигуру, мы можем получить совпадающую с ней другую. Например, изображенные на рисунке треугольники ABC и DEF являются конгруэнтными, поскольку при смещении влево треугольник DEF полностью совпадет с треугольником ABC. На рисунке это показано с помощью специальных меток: если соответствующие стороны или углы двух фигур маркированы одинаковым количеством черточек, они равны.
Для этого даже есть специальный математический символ – ≅; наша запись, таким образом, будет выглядеть как ABC ≅ DEF, что значит, что стороны обоих треугольников и их углы идеально друг с другом совпадают: стороны AB, BC и CA равны сторонам DE, EF и FD (соответственно), а углы по вершинам A, B и C равны углам по вершинам D, E и F (также соответственно). Именно это мы и имеем в виду, когда отмечаем одинаковым количеством черточек совпадающие стороны и углы этих двух по сути разных (хоть и равных) треугольников.
Остальное – дело техники. Если вы, например, имеете дело с двумя равносторонними треугольниками и знаете, что углы двух из трех пар равны (допустим, ∠A = ∠D и ∠B = ∠E), вы можете смело утверждать, что равными будут углы и третьей пары – а значит, треугольники являются конгруэнтными. Информации тут даже больше, чем нужно: нам вполне достаточно знать, что равными будут боковые стороны треугольников (AB = DE и AC = DF) и углы между ними (∠A = ∠D). А дальше все просто: BC = EF, ∠B = ∠E, а ∠C = ∠F. Из этого вытекает аксиома конгруэнтности треугольников по двум сторонам и лежащему между ними углу.
Это именно аксиома, а не теорема, поскольку доказать ее с помощью уже существующих аксиом невозможно. Зато, принятая на веру, она ложится в основу других не менее полезных теорем конгруэнтности а) по трем сторонам; б) по одной стороне и двум прилежащим к ней углам; и в) по двум углам и прилежащей к одному из них стороне. (Не существует только теоремы конгруэнтности по двум сторонам и прилежащему к одной из них углу: для стопроцентной уверенности угол все же должен находиться между сторонами.) Самой интересной из них мне кажется теорема а), ведь изначально в ней вообще никак не упоминаются углы, равенство которых доказывается через равенство сторон.
Но вернемся к аксиоме по двум сторонам и углу между ними и докажем с ее помощью одну замечательную теорему, касающуюся равнобедренных треугольников. Равнобедренным называется такой треугольник, две из трех сторон которого имеют одинаковую длину. (И кстати, уж коли об этом зашла речь – есть и другие виды треугольников: равносторонние – в которых все три стороны равны; прямоугольные – в которых один угол равен 90°; остроугольные – в которых все три угла меньше 90°; и, наконец, тупоугольные – в которых один угол больше 90°.)
Теорема о равнобедренном треугольнике: Если в равнобедренном треугольнике ABC стороны AB и AC равны, противолежащие этим сторонам углы будут также равны.
Доказательство: Из точки A проведем линию так, чтобы она делила ∠A ровно пополам и пересекала отрезок BC в точке X, как на рисунке. Это биссектриса угла A.
Получившиеся таким образом треугольники BAX и CAX являются конгруэнтными согласно аксиоме по двум сторонам и лежащему между ними углу: BA = CA (что следует из понятия равнобедренности), ∠BAX = ∠CAX (что следует из понятия биссектрисы), а AX = AX (вернее, не так: отрезок AX не уникален, он появляется одновременно в двух треугольниках и не меняет свою длину). А так как BAX ≅ CAX, также равны будут и остальные стороны и углы, в том числе ∠B = ∠C, что и требовалось доказать.◻
Отступление
То же можно доказать и с помощью теоремы конгруэнтности по трем сторонам. Для этого возьмем точку M как середину отрезка BC, то есть чтобы BM было равно MC. Проведем линию по отрезку AM. Как и в предыдущем доказательстве, треугольники BAM и CAM будут конгруэнтными, потому что BA = CA (равнобедренность), AM = AM, а MB = MC (потому что точка M находится ровно посередине BC). Следовательно, согласно доказательству по трем парам сторон, BAM ≅ CAM, что говорит нам о равности лежащих в них углов, в том числе и ∠B = ∠C, что и требовалось доказать.
Из факта конгруэнтности следует, что ∠BAM = ∠CAM, следовательно, отрезок AM является биссектрисой. Более того, так как ∠BMA = ∠CMA и в сумме они дают 180°, каждый из них должен быть равен 90°, из чего следует вывод, что в равнобедренном треугольнике биссектриса, проложенная из угла A, будет перпендикуляром к основанию BC.
Кстати, доказательство от обратного в отношении равнобедренного треугольника тоже вполне эффективно, то есть если ∠B = ∠C, то AB = AC. Для этого, как и в самом первом доказательстве, проведем биссектрису из точки A в точку X. Утверждение, что BAX ≅ CAX, в этом случае следует из теоремы конгруэнтности по двум углам и прилежащей к одному из них стороне: ∠B = ∠C (согласно изначальному условию), ∠BAX = ∠CAX (согласно определению биссектрисы), а AX = AX. Значит, AB = AC, то есть треугольник ABC является равнобедренным.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!