Твиты о Вселенной. Микроблоги о макропроблемах - Говерт Шиллинг
Шрифт:
Интервал:
Космический телескоп «Хаббл» также имеет УФ спектрограф/камеру STIS. Установлен в 1997, вышел из строя в 2004, отремонтирован космонавтами в 2009.
Настоящий наиболее активный УФ космический телескоп — это GALEX (Galaxy Evolution Explorer), запущенный в 2003. Исследует формирование звезд в отдаленных галактиках.
УФ телескопы могут также обнаружить присутствие тепло-горячей межгалактической среды (WHIM): очень разреженного газа между галактиками и скоплениями галактик.
Присутствие атомов кислорода и азота в WHIM выявляется при отрыве электронов за счет поглощения определенных частот УФ излучения от далеких квазаров.
Между тем, УФ камеры на борту солнечных космических телескопов, таких как SOHO и Solar Dynamics Observatory, отслеживают взрывы вспышек на Солнце.
Самые высокоэнергетические виды излучения в природе — рентгеновские лучи (Х-лучи, длина волны 0,01–10 нм) и гамма-лучи (все, что короче 0,01 нм).
На Земле рентгеновские лучи используются в медицинских целях. Энергия их квантов достаточна для прохождения через ткани человека; могут вызвать рак, если доза слишком велика.
Гамма-лучи: обладают еще большей энергией квантов. Образуются в ядерных реакциях. Могут быть смертельными. К счастью, атмосфера Земли блокирует космические X- и гамма-лучи.
Ракетный эксперимент в 1949 обнаружил рентгеновское излучение Солнца. В 1962 еще один ракетный эксперимент обнаружил первый космический рентгеновский источник, Скорпион Х-1.
С тех пор летали многие рентгеновские спутники, в том числе Chandra (НАСА) и XMM-Newton (ЕКА), которые функционируют и в настоящее время.
Рентгеновские лучи проходят сквозь зеркало телескопа, поэтому нужна специальная оптика и/или детекторы, чтобы получить спектры или создать рентгеновский образ неба.
Рентгеновские лучи генерируются чрезвычайно горячим газом (млн градусов), например когда он втягивается в черную дыру или сотрясается в остатках сверхновой.
Спутники с гамма-излучением: Комптоновская обсерватория (1991–2000), а также Integral (ЕКА) и Fermi (НАСА) — функционируют и в настоящее время.
Важная область исследований: всплески гамма-лучей. Большинство событий во Вселенной, сопровождающихся выбросом энергии, вызваны взрывающимися звездами-гигантами или слиянием нейтронных звезд.
Взаимная аннигиляция материи и антиматерии и распад гипотетических частиц темной материи также производит рассеянные гамма-лучи.
Высокоэнергетические фотоны гамма-лучей генерируют поток вторичных частиц в атмосфере Земли, наблюдаемых с помощью наземных инструментов.
Рентгеновские и гамма-лучи открывают высокоэнергетическую Вселенную ищущим острых ощущений астрономам: горячие, самые яростные и самые взрывоопасные события в природе.
Это не лучи, а быстрые заряженные частицы из космоса, происхождение которых еще плохо изучено.
В 1912, летая на воздушном шаре на высоте 5300 м, австрийский физик Виктор Гесс обнаружил, что атомы в воздухе на больших высотах лишены большей части электронов.
Американский физик Роберт Милликен ошибочно полагал, что такая «ионизация» вызвана высокой энергией фотонов. Он ввел термин «космические лучи».
Около 90 % частиц в космических лучах являются протонами (ядра атома водорода); 9 % — альфа-частицы (ядра гелия), 1 % — более тяжелые ядра.
При столкновении с молекулами воздуха космические лучи производят потоки вторичных частиц и очень слабое свечение, известное как излучение Вавилова — Черенкова.
Наземные детекторы частиц, расположенные на большой площади, регистрируют атмосферные потоки. Сверхчувствительные детекторы света регистрируют излучение Вавилова — Черенкова.
Самой мощной обсерваторией космических лучей на сегодняшний день является обсерватория Пьера Оже в Аргентине: 1600 детекторов, распределенных более чем на 3000 км2.
К сожалению, заряженные частицы отклоняются магнитным полем Млечного Пути, так что направление прихода на Землю не связано с местом их рождения.
Космические частицы сверхвысоких энергий (КЧСВЭ) — это протоны, движущиеся почти со скоростью света и переносящие каждый столько же энергии, сколько теннисный мяч при сильной подаче.
Эти КЧСВЭ могут быть в 50 млн раз более быстрыми, чем частицы самых высоких энергий, образующиеся в любом искусственном ускорителе частиц.
КЧСВЭ очень редки. Они не легко отклоняются. Могут быть созданы в относительно близких активных галактиках, скрывающих центральные черные дыры.
Космические лучи с меньшими энергиями, вероятно, ускоряются в ударных волнах от взрывов сверхновых, но точный механизм пока не ясен.
Нейтрино — субатомные частицы, практически не имеющие массы. Они редко взаимодействуют с другими частицами, что затрудняет их обнаружение.
Нейтрино были постулированы в 1930 Вольфгангом Паули для объяснения экспериментов с частицами. Впервые были зарегистрированы в ядерном реакторе в 1956.
Нейтрино заполняют Вселенную. Около 400 триллионов нейтрино пронзают ваше тело каждую секунду почти со скоростью света.
Многие нейтрино возникли во время Большого взрыва. Другие рождаются в ядерных реакциях в звездных ядрах и при взрывах сверхновых.
Нейтрино могут быть обнаружены путем наблюдения за большими объемами воды: очень редко они взаимодействуют с атомами, создавая крошечные вспышки света.
Детекторы построены под землей, чтобы защитить их от космических лучей. Некоторые крупные нейтринные детекторы: Super-Kamiokande (Япония), Sudbury (Канада).
Крупнейшим на сегодняшний день является IceCube Neutrino Observatory на Южном полюсе: 1 кубический км льда, содержащий тысячи световых детекторов.
Большинство нейтрино прибывает на Землю, приходя из ядра Солнца. В 1987 были неожиданно обнаружены нейтрино от близкого взрыва сверхновой.
Во время путешествия через пространство нейтрино изменяет «аромат» (электронное/мюонное/тау-нейтрино). Это возможно только при наличии у нейтрино сверхмалой массы.
Однако, несмотря на многочисленность реликтовых нейтрино, возникших в Большом взрыве, они настолько легки, что не могут отвечать за существование темной материи.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!