📚 Hub Books: Онлайн-чтение книгДомашняяКраткая история почти всего на свете - Билл Брайсон

Краткая история почти всего на свете - Билл Брайсон

Шрифт:

-
+

Интервал:

-
+
1 ... 44 45 46 47 48 49 50 51 52 ... 154
Перейти на страницу:

Возможно, самой захватывающей из квантовых невероятностей является идея, вытекающая из сформулированного в 1925 году Вольфгангом Паули принципа запрета, согласно которому в определенных парах субатомных частиц, даже разделенных значительными расстояниями, каждая моментально «узнает», что делает другая. Частицы обладают свойством, известным как спин[163]. И, согласно квантовой теории, в тот момент, как вы устанавливаете спин одной частицы, ее родственная частица, независимо от того, как далеко она находится, моментально начинает крутиться с той же скоростью в противоположном направлении.

Это похоже на, пользуясь сравнением научного писателя Лоуренса Джозефа[164], то, как если бы у вас было два одинаковых бильярдных шара, один в Огайо, другой на Фиджи, и в тот момент, когда вы закрутите один шар, второй тотчас же крутится в противоположном направлении с точно такой же скоростью. Удивительно, что это явление подтвердилось в 1997 году, когда физики Женевского университета разнесли фотоны на расстояние семи миль и продемонстрировали, что вмешательство в движение одного вызвало мгновенную реакцию другого[165].

Дошло до того, что на одной из конференций Бор по поводу одной из теорий бросил замечание, что вопрос не в том, безумна ли она, а в том, достаточно ли она безумна. Чтобы проиллюстрировать непостижимую природу квантового мира, Шредингер предложил знаменитый мысленный эксперимент, в котором гипотетического кота помещают в ящик с одним атомом радиоактивного вещества, прикрепленным к пробирке с синильной кислотой. Если в течение часа частица распадется, она запустит механизм, который разобьет пробирку и отравит кота. Если нет, кот останется жив. Но мы не сможем узнать, что произошло на самом деле, так что с научной точки зрения нет другого выбора, как считать, что кот одновременно на 100 процентов жив и на 100 процентов мертв. Это означает, как с понятным раздражением заметил Стивен Хокинг, что никто не может «точно предсказать дальнейшие события, если не может даже точно определить нынешнее состояние Вселенной!»

Из-за этих странностей многие физики недолюбливали квантовую теорию или по крайней мере отдельные ее аспекты, и больше всех Эйнштейн. Это было более чем странно, поскольку именно он в своем annus mirabilis[166] 1905 года так убедительно показал, что фотоны могут вести себя то как элементарные частицы, то как волны – представление, лежащее в самой основе новой физики. «Квантовая теория весьма достойна уважения», – тактично отмечал он, но на самом деле не питал к ней любви. «Господь не играет в кости», – говаривал он[167].

Эйнштейн не мог смириться с мыслью, что Бог мог создать Вселенную, в которой некоторые вещи были бы абсолютно непознаваемы. Кроме того, мысль о воздействии на расстоянии – что одна элементарная частица могла моментально повлиять на другую за триллион миль от нее – была полным попранием специальной теории относительности. Ничто не могло превзойти скорость света, и тем не менее находились физики, настаивавшие на том, что на суб атомном уровне информация каким-то образом могла обгонять свет. (Между прочим, никто так и не объяснил, каким образом элементарным частицам удается такое достижение. По словам физика Якира Ааронова[168], ученые решили эту проблему, «просто перестав о ней думать[169]».)

Вдобавок ко всему сказанному квантовая физика породила невиданный до тех пор уровень беспорядка. Для объяснения свойств Вселенной вдруг потребовалось два набора законов – квантовая теория для мира очень малых величин и теория относительности для Вселенной больших расстояний. Гравитация из теории относительности блестяще объясняла, почему планеты обращаются по орбитам вокруг звезд и почему галактики имеют тенденцию к скучиванию, но оказалось, что она не имеет никакого влияния на уровне элементарных частиц. Для объяснения того, что же связывает атом воедино, требовалась некая иная сила, и в 1930-х годах были обнаружены сразу две таких: сильное ядерное взаимодействие и слабое ядерное взаимодействие. Сильное взаимодействие скрепляет атомы воедино; это оно дает возможность протонам удерживаться вместе в ядре. Слабое взаимодействие отвечает за более разнообразный круг задач, главным образом относящихся к управлению скоростью определенных видов радиоактивного распада.

Слабое ядерное взаимодействие, несмотря на свое название, в десять миллиардов миллиардов миллиардов раз сильнее тяготения[170], а сильное взаимодействие еще мощнее, причем намного. Но их влияние ограничивается крайне малыми расстояниями. Сильное взаимодействие распространяется всего на стотысячную часть диаметра атома. Вот почему ядра атомов такие компактные и плотные, а элементы с большими переполненными ядрами такие нестойкие: сильное взаимодействие просто не может удержать все их протоны.

Кончилось тем, что у физиков на руках оказалось два набора законов – один для мира очень малых величин, другой для большой Вселенной, – существующих отдельно друг от друга. И это тоже не нравилось Эйнштейну. Остаток жизни он посвятил попыткам найти способ связать эти свободные концы в одну Единую теорию и неизменно терпел неудачи. Время от времени он думал, что ему это удалось, но в конечном счете узел всегда развязывался. Со временем он все более оказывался в стороне от господствующих направлений в науке, и порой его даже немного жалели. Сноу писал, что почти все без исключения «его коллеги считали и считают поныне, что вторую половину жизни он растратил впустую».

1 ... 44 45 46 47 48 49 50 51 52 ... 154
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?