BIG DATA. Вся технология в одной книге - Андреас Вайгенд
Шрифт:
Интервал:
Сенсорные данные, полученные в процессе общения, могут стать полезными, привлекая внимание к важным моментам, которые могли оказаться упущенными. Представьте себе, например, что у вас есть возможность направить запись разговора для обработки и анализа. Приложение Cogi позволяет отслеживать наиболее интересные фрагменты разговора. Последние пятнадцать секунд беседы загружаются во временный аудиобуфер телефона, и если вы слышите что-то интересное, то нажатием кнопки можете отправить их в запоминающее устройство и активировать запись, которая будет продолжаться до тех пор, пока вы ее не остановите. Если кнопку не нажимать, содержимое буфера будет обновлено. Когда это приложение используется несколькими людьми для записи одного и того же разговора, можно сравнить, что именно каждый из них выделил в качестве интересных для сохранения фрагментов. По мере накопления сохраненных записей они могут анализироваться, чтобы определить, какие участники беседы, слова или темы привлекали наибольшее внимание.
Уровень интереса и релевантность могут меняться по ситуации. Из примера с неопределенным «ягуаром» в главе 1 (который мог быть кошкой, автомобилем или операционной системой компьютера) мы знаем, что алгоритмы ранжируют результаты поиска на основе целого ряда контентных категорий, выделяя наиболее соответствующую вашим намерениям информацию. Знание конкретной ситуации позволяет инфопереработчикам повысить релевантность предоставленных результатов. Например, представим, что вы находитесь в зоопарке и ищете «ягуар» при помощи смартфона. Если у приложения есть доступ к вашим геолокационным данным, оно сравнит их с картой местности, и контент, относящийся к представителю семейства кошачьих, займет верхние места в результатах поиска. Если вы стоите на парковке зоопарка, приложению потребуется задействовать камеры телефона, чтобы понять, интересуетесь вы последней моделью дорогого автомобиля или хотите побольше узнать о больших кошках после сегодняшнего посещения.
Однако не всякий контекстный поиск очевиден. Если человек ищет «жасмин» после ночи, проведенной в клубе, весьма маловероятно, что он хочет с утра пораньше заняться садоводством и нуждается в информации о цветочках. Наверное, он ищет адрес круглосуточной китайской закусочной, где по дороге домой можно взять еду на вынос, или – это не более чем предположение – хочет посмотреть на живых моделей с сайта для взрослых Livejasmin[246]. Он в городе или у себя дома? Чтобы отправить человека именно туда, куда он хочет, инфопереработчику потребуются его текущие и предыдущие геолокационные данные.
Учет окружающей обстановки также помогает принимать более удачные решения на долгосрочную перспективу или, как говорит Дэнни Канеман, думать «медленно», а не «быстро». Так, некоторые банки подумывали над тем, чтобы предлагать клиентам услугу «чтобы потом не пожалеть», основанную на истории их операций и текущей ситуации. В 4 утра в Лас-Вегасе вы запрашиваете у банкомата тысячу долларов. Вместо того чтобы сразу зашелестеть купюрами, аппарат выдает напоминание: «Вы действительно хотите снять такую большую сумму именно сейчас? Люди, которые в аналогичной ситуации говорили «да», обычно потом жалели об этом».
СЕГОДНЯ
ЛЮБОЙ ЧЕЛОВЕК
ПОСТОЯННО УЧАСТВУЕТ
В ИНТЕРНЕТ-ЭКСПЕРИМЕНТАХ
Если сенсорное устройство находится в вашем распоряжении, то условия, при которых ваша ситуация становится известной инфопереработчику, определяете вы. Но большую часть несметного числа записывающих вашу жизнь датчиков будут контролировать банки, магазины, работодатели, школы и органы власти. Интерес к использованию все более подробной личной информации нарастает, и этот интерес включает в себя не только то, где вы находитесь в каждый момент времени, но и то, с кем вы, как вы себя ощущаете и где центр вашего внимания по сравнению с тем, где ему «положено» быть. Но кто решает, в каких ситуациях нужны ваши «полные подробности»? Прежде чем перейти к этому фундаментальному вопросу, нам нужно понять, какие выводы можно сделать на основе сенсорных данных, не всегда находящихся в вашем распоряжении.
От «где» к «с кем»
2 мая 2000 года ровно в 4 утра по всемирному координированному времени американские власти прекратили добавлять шум к сигналам двадцати четырех спутников министерства обороны, в результате чего точность определения местоположения объектов в системе GPS выросла на порядок, до нескольких метров. Это позволило расширить диапазон услуг навигации для частных лиц[247]. Польза от гражданского применения высокоточного сигнала оказалась огромной: по имеющимся оценкам, в 2013 году только повышение эффективности бизнеса за счет применения GPS увеличило ВВП США на 70 миллиардов долларов[248]. Вклад GPS в совершенствование здравоохранения, техники безопасности и охраны окружающей среды еще предстоит оценить.
Преподаватель университета штата Техас в Остине Тодд Хамфрис считает, что сигнал GPS для гражданского применения может быть еще более точным. Компания Samsung профинансировала работы, в ходе которых ему с коллегами удалось довести точность определения местоположения GPS-приемника обычного мобильного телефона до сантиметра[249]. По прогнозу Хамфриса, в течение ближайших десяти лет практически все предметы будут оборудованы миниатюрными устройствами геолокации, и люди смогут искать свои пожитки примерно так же, как сейчас ищут информацию в интернете[250]. Но и нынешней точности сигнала более чем достаточно, чтобы понять, где вы.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!