Путешествие по Карликании и Аль-Джебре - Владимир Артурович Левшин
Шрифт:
Интервал:
Он передал победительницам шахматные доски с красивыми фигурами из слоновой кости и добавил:
— Меня так заинтересовали оба выступления, что следующее путешествие я совершу в Бесконечность. А потом — кто знает? — может быть, доберусь и до Нуля!
Барон поклонился. Соревнования кончились, и мы отправились спать.
Ведь завтра нам идти на строительство! А перед этим не мешает хорошенько отдохнуть.
Олег
Новые открытия Нулика
(Нулик — отряду РВТ)
Здравствуйте, ребята! Ну и работу вы нам задали! Теперь мы только и делаем, что играем в шахматы. Каждый сам смастерил себе доску и фигуры. Играем с утра до вечера — то друг с другом, а то и каждый сам с собой. Но я всё-таки успел сделать открытие: по шахматной доске сразу видно, что Карликания и Аль-Джебра друзья. Ведь каждая шахматная клетка имеет своё обозначение, которое состоит из цифр и букв.
Например, е5, а4, d8. Разве это не доказательство дружбы?
Задачу с зёрнами всё-таки решили проверить. Конечно, без риса. Просто все стали писать на своих досках, сколько надо положить рисинок на каждую клетку: 1, 2, 4, 8, 16, 32, 64, 128… Когда заполнили первый ряд, выяснилось, что одни пишут слева направо, а другие справа налево.
Стали спорить, как надо писать. Положили две доски одну под другой. На одной числа написаны внизу, слева направо, на другой — вверху, справа налево. Числа, одинаково отстоящие от края, оказались друг против друга. Прямо как на палке у фокусника!
Я попробовал сложить каждую пару, но одинаковых чисел не получилось. Понятно: ведь прогрессия-то не арифметическая, а геометрическая! Тогда я их перемножил и сделал второе открытие: все произведения оказались совершенно одинаковые:
1 × 128 = 128;
2 × 64 = 128;
4 × 32 = 128;
8 × 16 = 128.
Да, теперь я уже не тот Нулик, что прежде. Меня и вправду не узнать. А всё ваши письма!
Дальше считать зёрна никто не захотел — кому же охота писать такие огромные числа? Но один Нулик задал интересный вопрос: если на шестьдесят четвёртую клетку надо положить девять с лишним квинтиллионов зёрен, то сколько всего зёрен будет на доске, если, конечно, заполнить все клетки?
— Что тут думать! — сказал другой Нулик. — Всего на доске будет зёрен два в шестьдесят третьей степени. То есть вот эти девять квинтиллионов.
— Ничего подобного, — возразил третий, — девять квинтиллионов будет только на последней клетке, а на всей доске во много раз больше.
Они заспорили, а я снова посмотрел на свою шахматную доску, где в первом ряду написана геометрическая прогрессия: 1, 2, 4, 8, 16, 32, 64, 128.
После треугольника Паскаля я вообще стал очень внимательно рассматривать числа — всё время ищу закономерности! Вот и сейчас сложил первый член прогрессии со вторым: 1 + 2 = 3. Сумма их оказалась на единицу меньше третьего члена — четвёрки. Потом я сложил 1 + 2 + 4. Получилось семь. А это на единицу меньше восьми. 1 + 2 + 4 + 8 = 15. И это тоже меньше шестнадцати на единицу. Выходит, сумма всех предыдущих членов этой геометрической прогрессии меньше последующего всегда на единицу. А это значит, что на шестидесяти трёх клетках шахматной доски будет столько же зёрен, сколько на последней, шестьдесят четвёртой, только на одно зёрнышко меньше. А всего на доске зёрен будет в два раза больше, чем на последней клетке, минус единица:
2 • 263 — 1.
А это ведь всё равно что
264 — 1.
Так я сделал третье открытие. И для этого мне не понадобилось ни писать всю прогрессию до конца, ни умножать девять квинтиллионов с хвостиком на два. Хорошая штука алгебра!
Нулик-Шахматист.
Волшебная практика
(Сева — Нулику)
Мы чуть не опоздали к началу рабочего дня. И всё из-за Тани. На стройках, говорит, всегда пыль и грязь. Как бы мне, говорит, там не испортить любимого платья в оборочках. Наконец она появилась в комбинезоне и сапогах, на голове косынка, защитные очки. Прямо хоть снимай для газеты: «Знатная электросварщица Татьяна Н.».
Девчонок хлебом не корми — дай надеть какую-нибудь обновку. Я-то знаю, что не платья ей жалко, — просто захотелось покрасоваться в комбинезоне.
Ну и лицо у неё было, когда она увидела, что строительство больше похоже на ухоженную детскую площадку, где ребята заняты разными техническими играми: пилят, вырезают, конструируют… Только «игрушки» здесь были гораздо крупнее. Кружевные стрельчатые краны легко передвигали в воздухе разноцветные пластикатные детали.
К нам подошла нарядная латинская буква Эф. Она удивлённо покосилась на Танин костюм:
— Хотите познакомиться с нашим экспериментальным строительством? Я вас провожу.
Первым долгом поинтересовались, что здесь строят.
— Да всё, что угодно, — ответила Эф. — Дома, машины, бассейны…
Мы залюбовались высоким домом из разноцветных кубиков… Он вырос прямо на наших глазах — ни дать ни взять воздушный замок. И как же мне жалко стало, когда этот замок вдруг рассыпался, а на его месте возникло длинное двухэтажное здание с плоской крышей.
— Охота была строить, а потом разрушать! — подосадовал я.
Но Эф объяснила, что здесь не просто строят, а делают расчёты, которые тут же проверяют на практике. Я подумал, что если это и практика, то, во всяком случае, волшебная.
К нам подошёл солидный карликан, Девятка.
— Здравствуйте, — обратился он к Эф. — Мы строим дом. Нам надо вырыть котлован для фундамента. Имеются три экскаватора. Первый может вырыть котлован за четыре часа, второй — за три, третий — за двенадцать. Через сколько часов будет готов котлован, если все три экскаватора работают одновременно? Это очень важно! Без этого я не смогу составить график строительства.
— Обратитесь к Главному Составителю, — ответила Эф.
Мы переглянулись.
— Нельзя ли и нам повидать Главного Составителя? — спросила Таня.
— А вы разве умеете решать уравнения? — поинтересовалась Эф.
Таня только покраснела. А я сказал напрямик, что мы об этом понятия не имеем.
— В таком случае вам придётся начать с азов! Чтобы решать уравнения, следует прежде всего познакомиться с отрицательными числами.
Ну,
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!