Онтогенез. От клетки до человека - Джейми Дейвис
Шрифт:
Интервал:
Рис. 65. Микрофиламенты конуса роста организованы в два типа структур: ламеллиподию (лидирующий край), которая поддерживается разветвленной сетью отдельных микрофиламентов, и филоподии, которые удлиняются, выталкиваясь за счет роста пучков микрофиламентов
Описанный выше механизм предполагает наличие тесной связи между способностью конусов роста крепиться к поверхности и их способностью продвигаться вперед. Это особенно важно, когда конус роста встречает на своем пути разные поверхности, а именно это и происходит как в экспериментальных условиях, так и в живых эмбрионах. Если поверхность под конусом роста более «липкая» с одной стороны конуса, чем с другой, он сместится в сторону более «липкой» поверхности. Именно по этой поверхности будет наиболее эффективно проталкиваться вперед новый лидирующий край. В результате конус роста будет двигаться в этом направлении.
Разные типы нейронов синтезируют разные типы белков адгезионного комплекса. Более того, один и тот же нейрон на разных этапах своего существования может производить разные наборы белков адгезионного комплекса. Каждый получившийся из этих наборов белков адгезионный комплекс избирательно прикрепляется к определенной молекуле на поверхности, по которой движется нейрон (если эта молекула там есть). Таким образом, если перед разными нейронами открывается один и тот же выбор поверхностей, они могут начать расти в разных направлениях.
Различия в адгезивных свойствах поверхностей – не единственная навигационная подсказка, которой могут воспользоваться конусы роста. Некоторые другие сигналы воздействуют на молекулярные механизмы, обеспечивающие сборку лидирующего края конуса роста.[228] Если на различные участки конуса роста действуют разные концентрации внешних сигнальных молекул, баланс между удлинением и сокращением на этих участках будет разным, и конус роста будет двигаться в направлении сигналов, активирующих удлинение, и удаляться от сигналов, активирующих сокращение.[229] Иногда разница в концентрации сигнальных молекул в разных областях эмбриона настолько велика, что конус роста реагирует по типу «все или ничего». Тогда конусы роста определенного типа вообще не достигают определенного участка. В других случаях различия в концентрации не столь резки, и конусы роста реагируют на них более сложным образом, что позволяет плавно подводить их к нужной цели. Бывает и так, что конусы роста доходят до нужного участка эмбриона по градиенту концентрации.
Пример реакции по типу «все или ничего» мы находим в системе, которая определяет, будут ли аксоны пересекать среднюю линию спинного мозга. Строгий контроль в этой системе очень важен, например, для того чтобы человек мог совершать асимметричные движения руками – скажем, для того чтобы, удерживая блюдце в левой руке, правой поднести к губам чашку чая. При движении руки с чашкой происходит произвольное сокращение бицепса (и других мышц). Насколько нам известно, молекулы, которые синтезируются в бицепсе левой и в бицепсе правой руки, совершенно одинаковы. Конусы роста двигательных нейронов в спинном мозге, предназначенные для управления бицепсами, сами по себе не могут уловить разницу между правой и левой рукой. Если бы конусы роста могли свободно пересекать центральную ось спинного мозга перед тем, как покинуть его и отправиться к мышцам, многие нейроны, которые должны контролировать правую руку, контролировали бы и левую, и наоборот. Тогда руки могли бы совершать только одинаковые движения. Этого необходимо избежать, а значит, двигательные нейроны, отходящие от правой стороны спинного мозга, должны идти только к правой руке. То же самое относится и к органам чувств. Мы можем понять, слева или справа от нас находится источник звука, потому что мозг соответствующим образом связан с сенсорной системой левого и правого уха. Организм может обнаружить и исправить какие-то случайные ошибки при помощи компенсаторных механизмов (о них пойдет речь в главе 15), но эти механизмы работают только в том случае, если большая часть «проводки» была изначально проложена правильно.
Пересечет ли конус роста среднюю линию (предположим, например, что речь идет о конусе роста аксона вставочного интернейрона, который передает сигналы от одного нейрона спинного мозга к другому), зависит главным образом от его реакции на контакт с клетками вентральной пластинки (напомню, что эта структура имеет форму полоски, которая проходит по вентральной поверхности нервной трубки; см. главу 5). На поверхности клеток вентральной пластинки есть белок под названием SLIT. Его распознает рецептор ROBO, имеющийся в конусах роста некоторых нейронов. При связывании рецептора ROBO с белком SLIT внутри конуса роста запускаются сигнальные пути, которые блокируют продвижение лидирующего края клетки, а также приводят к его быстрому сокращению.[230] Итак, если какая-то часть лидирующего края конуса роста, несущего рецептор ROBO, вошла в контакт с клеткой, экспрессирующей SLIT, то она сокращается, и продвижение аксона в этом направлении блокируется. Аксон будет расти в том направлении, куда его ведет та часть лидирующего края, которая не контактировала с несущими белок SLIT клетками средней линии, и поэтому не сможет ее пересечь. Если же конус роста лишен рецептора ROBO, он абсолютно невосприимчив к белку SLIT и может безнаказанно пересечь среднюю линию (рис. 66). Набор белков, экспрессирующихся в конусе роста, может меняться на протяжении его жизни. Аксоны, которые должны пересечь среднюю линию, могут послужить тут отличным примером. Пока они движутся к средней линии, у них есть рецепторы, которые регистрируют «притягивающие» сигналы клеток средней линии, а рецепторов ROBO практически нет (более того, у них синтезируются белки, которые в любом случае подавляют работу рецепторов ROBO). Поэтому такие аксоны без труда пересекают срединную линию. В процессе пересечения, однако, их конусы роста подвергаются воздействию высоких уровней концентрации белка Sonic Hedghog, который синтезируют клетки вентральной пластинки (глава 7). Под действием этого белка конусы роста после небольшой задержки, достаточной для пересечения средней линии, приобретают чувствительность к ROBO.[231] Это означает, что средняя линия теряет для них привлекательность, и они не пытаются снова пересечь ее, а движутся дальше к местам назначения.[232] (Аббревиатура ROBO происходит от названия мутации плодовых мушек roundabout (карусель), которая инактивирует аналог ROBO у мушек и приводит к тому, что конусы роста несколько раз пересекают среднюю линию, двигаясь по кругу, как лошадки в карусели.)
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!