📚 Hub Books: Онлайн-чтение книгДомашняяНоль. Биография опасной идеи - Чарльз Сейфе

Ноль. Биография опасной идеи - Чарльз Сейфе

Шрифт:

-
+

Интервал:

-
+
1 ... 42 43 44 45 46 47 48 49 50 51
Перейти на страницу:

f '(x) = lim f(x + ε) — f(x) / ε при ε → 0.

Чтобы увидеть, как это помогает избавиться от грязной уловки Ньютона, рассмотрим ту функцию, которая использовалась для демонстрации флюксий Ньютона: f '(x) = x2 + x + 1. Производная этой функции равна

f '(x) = lim (x2 + 2εx + ε2 + x + ε+ 1 — x2 — x — 1) / ε при ε → 0..

Теперь x2 взаимно уничтожается с –x2, x аннигилирует с –x, а 1 — с –1. Остается

f '(x) = lim (2εx + ε + ε2) / ε при при ε → 0.

Разделив на ε, мы помним, что ε всегда отлично от 0, потому что мы еще не вычислили предел. Получаем

f '(x) = lim (2x + 1 + ε) при ε → 0.

Теперь мы находим предел и позволяем ε приблизиться к 0. Получаем

f '(x) = 2x + 1 + 0 = 2x +1

Это и есть ответ, который мы ищем. Всего лишь небольшой сдвиг в мышлении, но он и составляет всю разницу.

Приложение D Кантор пересчитывает рациональные числа

Чтобы показать, что рациональных чисел столько же, сколько натуральных, Кантор должен был всего лишь предложить разумный способ «рассадки». Именно это он и проделал.

Как вы можете вспомнить, рациональные числа — это набор чисел, которые могут быть выражены как a / b, где a и b — целые числа (при b, конечно, отличном от ноля). Для начала рассмотрим положительные рациональные числа.

Представьте себе числовую решетку — две числовые оси, пересекающиеся в нулевой точке, совсем как декартовы координаты. Поставим ноль в начало и любой другой точке решетки соотнесем рациональное число x / y, где x — координата точки по оси X, а y — координата по оси Y. Поскольку числовые оси уходят в бесконечность, каждое положительное сочетание x и y имеет точку на решетке (рис. 58).

Ноль. Биография опасной идеи

Рис. 58. Нумерация рациональных чисел

Теперь давайте составим схему рассадки положительных рациональных чисел. В качестве места 1 начнем с точки 0 на решетке. Затем перейдем к точке 1 / 1 — это место 2, затем к точке 1 / 2 — это место 3, затем — к 2 / 1 (что, конечно, то же самое, что число 2) — это место 4, затем к 3 / 1 — это место 5. Мы можем путешествовать туда и сюда по решетке, пересчитывая по дороге числа. Это дает такую схему рассадки (место — рациональное число):

1 . . . . . . . . . . 0

2 . . . . . . . . . . 1

3 . . . . . . . . . . 1/2

4 . . . . . . . . . . 2

5 . . . . . . . . . . 3

6 . . . . . . . . . . 1

7 . . . . . . . . . . 1/3

8 . . . . . . . . . . 1/4

9 . . . . . . . . . . 2/3

И так далее, и так далее.

Со временем все числа получат места, некоторые — даже два. Удалить дубликаты легко — просто пропустить их при составлении схемы.

Следующий шаг — удвоить список, добавив отрицательные после соответствующих положительных рациональных чисел. Это даст нам схему рассадки:

Место — рациональное число

1 . . . . . . . . . . . . . . . . . . 0

2 . . . . . . . . . . . . . . . . . . 1

3 . . . . . . . . . . . . . . . . .–1

4 . . . . . . . . . . . . . . . . . . 1/2

5 . . . . . . . . . . . . . . . — 1/2

6 . . . . . . . . . . . . . . . . . . 2

7 . . . . . . . . . . . . . . . . .–2

8 . . . . . . . . . . . . . . . . . . 3

9 . . . . . . . . . . . . . . . . .–3

И так далее, и так далее.

Теперь все рациональные числа — положительные, отрицательные и ноль — имеют места. Поскольку никто не остался стоять и все места заняты, рациональных чисел столько же, сколько счетных.

Приложение E Сделайте собственную машину времени для кротовой норы

Это легко — просто следуйте этим несложным инструкциям.

Ноль. Биография опасной идеи

Шаг 1. Создайте небольшую кротовую нору. Оба ее конца будут в одной и той же точке времени.

Ноль. Биография опасной идеи

Шаг 2. Прикрепите один конец кротовой норы к чему-нибудь очень тяжелому, а другой — к космическому кораблю, двигающемуся с 90% скорости света. Каждый год на корабле эквивалентен 2,3 года на Земле, часы на обоих концах кротовой норы будут идти с разной скоростью.

Ноль. Биография опасной идеи

Шаг 3. Подождите немного. Через 46 лет по земному времени направьте кротовую нору к дружественной планете. Путешествие по кротовой норе приведет вас из 2046 года на Земле в 2020 год на Зилоксе или наоборот.

Ноль. Биография опасной идеи

Шаг 4. Если вы достаточно сообразительны, вы могли начать планировать эту миссию заранее. Вы могли отправить на Зилокс послание задолго до того, как отправились в путь, организовав полет корабля с Зилокса навстречу, начавшийся в 1974 году (по летоисчислению Зилокса). Тогда в 2020 году по времени Зилокса другая кротовая нора могла бы переправить вас на Землю в 1994 год (по земному времени). Если вы будете пользоваться обеими кротовыми норами, то сможете перепрыгнуть из 2046 года (по Земле) в 2020-й (по Зилоксу) и далее в 1994-й (по Земле): вы вернетесь обратно во времени более чем на полстолетия!

1 ... 42 43 44 45 46 47 48 49 50 51
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?